首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   12篇
  2013年   8篇
  2012年   11篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1995年   2篇
  1994年   5篇
  1989年   3篇
  1988年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1969年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
101.

Introduction  

A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively).  相似文献   
102.
In growing plant cells, the combined activities of the cytoskeleton, endomembrane, and cell wall biosynthetic systems organize the cytoplasm and define the architecture and growth properties of the cell. These biosynthetic machineries efficiently synthesize, deliver, and recycle the raw materials that support cell expansion. The precise roles of the actin cytoskeleton in these processes are unclear. Certainly, bundles of actin filaments position organelles and are a substrate for long-distance intracellular transport, but the functional linkages between dynamic actin filament arrays and the cell growth machinery are poorly understood. The Arabidopsis (Arabidopsis thaliana) “distorted group” mutants have defined protein complexes that appear to generate and convert small GTPase signals into an Actin-Related Protein2/3 (ARP2/3)-dependent actin filament nucleation response. However, direct biochemical knowledge about Arabidopsis ARP2/3 and its cellular distribution is lacking. In this paper, we provide biochemical evidence for a plant ARP2/3. The plant complex utilizes a conserved assembly mechanism. ARPC4 is the most critical core subunit that controls the assembly and steady-state levels of the complex. ARP2/3 in other systems is believed to be mostly a soluble complex that is locally recruited and activated. Unexpectedly, we find that Arabidopsis ARP2/3 interacts strongly with cell membranes. Membrane binding is linked to complex assembly status and not to the extent to which it is activated. Mutant analyses implicate ARP2 as an important subunit for membrane association.In plant cells, the actin cytoskeleton forms an intricate network of polymers that organizes the cytoplasm and defines the long-distance intracellular trafficking patterns of the cell. The actin network is critical not only for tip-growing cells (for review, see Cole and Fowler, 2006; Lovy-Wheeler et al., 2007) but also during the coordinated cell expansion that occurs in cells that utilize a diffuse growth mechanism (for review, see Wasteneys and Galway, 2003; Smith and Oppenheimer, 2005). For example, the polarized diffuse growth of leaf trichomes is highly sensitized to actin cytoskeleton disruption (Mathur et al., 1999; Szymanski et al., 1999), and a recent analysis of Arabidopsis (Arabidopsis thaliana) ACTIN mutants revealed widespread cell swelling and isotropic expansion in numerous cell types in the root and shoot (Kandasamy et al., 2009). The actin network is dynamic. The array reorganizes during cell morphogenesis (Braun et al., 1999; Szymanski et al., 1999) and in response to endogenous (Lemichez et al., 2001) and external (Hardham et al., 2007) cues. A major research goal is to better understand not only how plant cells convert G-actin subunits to particular actin filament arrays but also how the actin network interacts with the cellular growth machinery during cell expansion.This is a difficult problem to solve, because in expanding vacuolated cells the actin array adopts numerous configurations and consists of dense meshworks of cortical actin filaments and bundles (Baluska et al., 2000), thick actin bundles that penetrate the central vacuole (Higaki et al., 2006), and meshworks of filaments and bundles that surround the nucleus and chloroplasts (Kandasamy and Meagher, 1999; Collings et al., 2000). The spatial relationships between these actin networks and localized cell expansion are not obvious. Certainly, the plasma membrane-cell wall interface is a critical location for the regulated delivery and fusion of vesicles containing cell wall polysaccharides. Frequent reports of localized domains of enriched cortical actin signal at regions of presumed localized cell expansion have led to the widely held view that the cortical actin array creates local tracks for vesicle-mediated secretion (for review, see Smith and Oppenheimer, 2005; Hussey et al., 2006). In one study, the dynamics of actin filaments were analyzed in living hypocotyl epidermal cells that utilize a diffuse growth mechanism (Staiger et al., 2009). In this case, individual actin filaments are very unstable and randomly oriented; therefore, the precise relationships between cortical F-actin, vesicle delivery, and cell shape change remain obscure. The best known function for the actin cytoskeleton is that of a track for myosin-dependent vesicle and organelle trafficking (Shimmen, 2007). The actin bundle network mediates the transport of cargo between endomembrane compartments (Geldner et al., 2001; Kim et al., 2005) and the long-distance actomyosin transport of a variety of organelles, including the Golgi (Nebenfuhr et al., 1999; Peremyslov et al., 2008; Prokhnevsky et al., 2008). Generation of distributed (Gutierrez et al., 2009; Timmers et al., 2009) and localized (Wightman and Turner, 2008) actin bundle networks appears to define early steps in the trafficking of Golgi-localized cellulose synthase complexes to the sites of primary and secondary wall synthesis, respectively.Plant cells employ diverse collections of G-actin-binding proteins, actin filament nucleators, and actin-bundling and cross-linking proteins to generate and remodel the F-actin network (for review, see Staiger and Blanchoin, 2006). One actin filament nucleator, termed the Actin-Related Protein2/3 (ARP2/3) complex, controls numerous aspects of plant morphogenesis and development. The vertebrate complex consists of the actin-related proteins ARP2 and ARP3 and five other unrelated proteins termed ARPC1 to ARPC5, in order of decreasing mass. ARP2/3 in isolation is inactive, but in the presence of proteins termed nucleation-promoting factors such as WAVE/SCAR (for WASP family Verprolin homologous/Suppressor of cAMP Repressor), ARP2/3 is converted into an efficient actin filament-nucleating machine (for review, see Higgs and Pollard, 2001; Welch and Mullins, 2002). In mammalian cells, ARP2/3 activities are linked to membrane dynamics. Keratocytes that crawl persistently on a solid substrate appear to use ARP2/3-generated dendritic actin filament networks at the leading edge to either drive or consolidate plasma membrane protrusion (Pollard and Borisy, 2003; Ji et al., 2008). In many vertebrate cell types, ARP2/3 has a strong punctate intracellular localization (Welch et al., 1997; Strasser et al., 2004), which could reflect hypothesized activities at the Golgi (Stamnes, 2002) or late endosomal (Fucini et al., 2002; Holtta-Vuori et al., 2005) compartment.Genetic studies in plants reveal nonessential but widespread functions for ARP2/3. In the moss Physcomitrella patens, the ARPC4 and ARPC1 subunit genes are critical during tip growth of protonemal filaments (Harries et al., 2005; Perroud and Quatrano, 2006). In Arabidopsis, loss of either ARP2/3 subunit gene or mutations in WAVE complex genes that positively regulate ARP2/3 cause complicated syndromes, including the loss of polarized diffuse growth throughout the shoot epidermis, defective cell-cell adhesion, and decreased hypocotyl elongation (for review, see Szymanski, 2005). Altered responses to exogenous Suc (Li et al., 2004; Zhang et al., 2008) and reduced root elongation (Dyachok et al., 2008) are also reported for wave and arp2/3 strains. In higher plants, the involvement of ARP2/3 in tip growth and root hair development is more subtle. In Lotus japonicus, mutation of NAP1 and PIR1, known positive regulators of ARP2/3 (Basu et al., 2004; Deeks et al., 2004; El-Assal et al., 2004a), causes incompletely penetrant root hair phenotypes, but in the presence of symbiotic bacteria, the mutants have defective infection threads and reduced root nodule formation. Arabidopsis arp2/3 mutants do not have obvious tip growth defects in pollen tubes or root hairs, but in the presence of GFP:TALIN (Mathur et al., 2003b) and in double mutant combinations with the actin-binding protein CAP1 (Deeks et al., 2007), the effects of ARP2/3 on root hair growth are unmasked.In Arabidopsis, the genetics of the positive regulation of ARP2/3 are well characterized and appear to occur solely through another heteromeric complex termed WAVE (Eden et al., 2002; for review, see Szymanski, 2005). The putative WAVE/SCAR complex contains five subunits, one of which is the ARP2/3 activator SCAR. Plant SCARs contain conserved N-terminal and C-terminal domains that mediate interactions with other WAVE complex proteins and ARP2/3 activation, respectively (Frank et al., 2004; Basu et al., 2005). In nonplant systems, the regulatory relationships between WAVE and ARP2/3 appear to vary between cell types and species (for review, see Bompard and Caron, 2004; Stradal and Scita, 2006). However, in Arabidopsis, double mutant analyses indicate that WAVE is the sole pathway for ARP2/3 activation and that all subunits positively regulate ARP2/3 (Deeks et al., 2004; Basu et al., 2005; Djakovic et al., 2006). SCAR quadruple mutants are indistinguishable from arp2/3 null plants (Zhang et al., 2008). In moss, BRICK1 and ARP2/3 mutants have similar phenotypes, suggesting conserved regulatory relationships between WAVE and ARP2/3 in the plant kingdom (Harries et al., 2005; Perroud and Quatrano, 2006, 2008).Despite extensive molecular genetic knowledge about the ARP2/3 pathway and the strong actin cytoskeleton and growth phenotypes of arp2/3 plants, there are few direct data on the existence of the plant complex and its cellular function. There are reports of ARP2/3 localization based on the behavior of individual subunits (Le et al., 2003). In some cases, the results are weakened by the unknown specificity of heterologous ARP2/3 antibodies (Van Gestel et al., 2003; Fiserova et al., 2006). A specific antibody was raised against Silvetia ARP2 (Hable and Kropf, 2005). In developing zygotes, rhizhoid emergence is an early and actin-dependent developmental event, and at this stage a broad subcortical cone of ARP2 signal extends from the nuclear envelope toward the rhizhoid apex (Hable and Kropf, 2005). Double labeling experiments detected considerable overlap between ARP2 and actin, but surprisingly, there was a broad cortical domain of putative organelle-associated distal ARP2 that did not overlap with actin. In tip-growing P. patens chloronema cells, ARPC4 also appears to be membrane associated and localizes to a broad subcortical apical zone (Perroud and Quatrano, 2006). For these localization and genetic studies that rely on individual ARP2/3 subunits, it is important to prove that a plant ARP2/3 complex exists to test for an association of the complex with endomembrane compartments.In this paper, we provide several lines of evidence for an evolutionarily conserved pathway for ARP2/3 complex assembly in plant cells. These studies are based in part on genetic and biochemical analyses of the putative ARP2/3 subunit gene ARPC4. We found that disruption of the ARPC4 gene caused catastrophic disassembly of the complex and an array of phenotypes that were indistinguishable from known arp2/3 mutants. Chromatography experiments clearly revealed that functional hemagglutinin (HA)-tagged ARPC4 and endogenous ARP3 subunits assemble fully into ARP2/3 complexes. Surprisingly, much of the cellular pool of the plant ARP2/3 complex is membrane associated. An analysis of an extensive collection of wave and arp2/3 mutants allowed us to conclude that the normal association with membranes depended on the presence of ARP2 and the assembly status of the complex but not on the existence of an active pool of ARP2/3 in the cell.  相似文献   
103.
This study was conducted to evaluate the modulatory effect of aqueous extract of Curcuma longa (L.) against γ-irradiation (GR), which induces biochemical disorders in male rats. The sublethal dose of GR was determined in primary hepatocytes. Also, the effect of C.?longa extract was examined for its activity against GR. In rats, C.?longa extract was administered daily (200?mg/kg body mass) for 21?days before, and 7?days after GR exposure (6.5 Gy). The lipid profile and antioxidant status, as well as levels of transaminases, interleukin-6 (IL-6), and tumour necrosis factor?α (TNFα) were assessed. The results showed that in hepatocytes, the aqueous extract exhibited radioprotective activity against exposure to GR. Exposure of untreated rats to GR resulted in transaminase disorders, lipid abnormalities, elevation of lipid peroxidation, trace element alterations, release of IL-6 and TNF, and decrease in glutathione and protein level of superoxide dismutase-1 (SOD-1) and peroxiredoxin-1 (PRDX-1). However, treatment of rats with this extract before and after GR exposure improved antioxidant status and minimized the radiation-induced increase in inflammatory cytokines. Changes occurred in the tissue levels of trace elements, and the protein levels of SOD-1 and PRDX-1 were also modulated by C.?longa extract. Overall, C.?longa exerted a beneficial radioprotective effect against radiation-induced oxidative stress in male rats by alleviating pathological disorders and modulating antioxidant enzymes.  相似文献   
104.
Four series of pyrazolylbenzenesulfonamide derivatives were synthesized and evaluated for their anti-inflammatory activity using cotton pellet induced granuloma and carrageenan-induced rat paw edema bioassays. Moreover, COX-1 and COX-2 inhibitory activity, ulcerogenic effect and acute toxicity were also determined. Furthermore, the target compounds were screened for their in-vitro antimicrobial activity against Eischerichia coli, Staphylococcus aureus and Candida albicans. Compounds 4-(3-Phenyl-4-cyano-1H-pyrazol-1-yl)benzenesulfonamide 9a and 4-(3-Tolyl-4-cyano-1H-pyrazol-1-yl)benzenesulfonamide 9b were not only found to be the most active dual anti-inflammatory antimicrobial agents in the present study with good safety margin and minimal ulcerogenic effect but also exhibited good selective inhibitory activity towards COX-2. A docking pose for 9a and 9b separately in the active site of the human COX-2 enzyme was also obtained. Therefore, these compounds would represent a fruitful matrix for the development of dual anti-inflammatory antimicrobial candidates with remarkable COX-2 selectivity.  相似文献   
105.
Variation in legumin, the major seed storage protein of Vicia faba was investigated in different (primitive and cultivated) varieties of V. faba and in other primitive Vicia species. Qualitative variation in legumin subunit patterns on gel electrophoresis was less within the species V. faba than the variation between Vicia species. However, the large seeded modern V. faba cultivars showed much increased levels of the ‘main’ legumin subunit pairs. Analyses of amino acid composition, and nitrogen and sulphur content did not show systematic variation between the samples tested, and suggested that breeding and selection had not decreased protein content or nutritional quality. It was concluded that the heterogeneities of legumin genes in the Vicia species examined are comparable, and that selection for a large-seeded phenotype in V. faba has had the effect of increasing the expression of a subset of legumin genes, those encoding the ‘main’ subunit pairs.  相似文献   
106.
The WAVE complex is an essential regulator of actin-related protein (ARP) 2/3-dependent actin filament nucleation and cell shape change in migrating cells. Although the composition of the WAVE complex is well characterized, the cellular mechanisms that control its activity and localization are not well known. The 'distorted group' defines a set of Arabidopsis genes that are required to remodel the actin cytoskeleton and maintain the polarized elongation of branched, hair-like cells termed trichomes. Several loci within this group encode homologs of ARP2/3 subunits. In addition to trichome distortion, ARP2/3 subunit mutants have reduced shoot fresh weight and widespread defects in epidermal cell-cell adhesion. The precise cellular function of plant ARP2/3, and the means by which it is regulated, is not known. In this paper, we report that the 'distorted group' gene PIROGI encodes a homolog of the WAVE complex subunit SRA1. The similar cell shape and actin phenotypes of pir and ARP2/3 complex subunit mutants suggest that PIROGI positively regulates ARP2/3. PIROGI directly interacts with the small GTPase ATROP2 with isoform specificity and with selectivity for active forms of the protein. PIROGI shares only 30% amino acid identity with its human homolog. However, both WAVE subunit homologs are functionally interchangeable and display identical physical interactions with RHO family GTPases and the Arabidopsis homolog of the WAVE complex subunit NAP125. These results demonstrate the utility of the 'distorted group' mutants to study ARP2/3 complex functions from signaling input to cell shape output.  相似文献   
107.
In a plant cell, a subset of actin filaments function as a scaffold that positions the endomembrane system and acts as a substrate on which organelle motility occurs. Other actin filament arrays appear to be more dynamic and reorganize in response to growth signals and external cues. The distorted group of trichome morphology mutants provides powerful genetic tools to study the control of actin filament nucleation in the context of morphogenesis. In this article, we report that DISTORTED3 (DIS3) encodes a plant-specific SCAR/WAVE homolog. Null alleles of DIS3, like those of other Arabidopsis thaliana WAVE and Actin-Related Protein (ARP) 2/3 subunit genes, cause trichome distortion, defects in cell-cell adhesion, and reduced hypocotyl growth in etiolated seedlings. DIS3 efficiently activates the actin filament nucleation and branching activity of vertebrate Arp2/3 and functions within a WAVE-ARP2/3 pathway in vivo. DIS3 may assemble into a WAVE complex via a physical interaction with a highly diverged Arabidopsis Abi-1-like bridging protein. These results demonstrate the utility of the Arabidopsis trichome system to understand how the WAVE and ARP2/3 complexes translate signaling inputs into a coordinated morphogenetic response.  相似文献   
108.
The dose of praziquantel required to kill 50% of adult worms in vivo (i.e. the ED50) was estimated for nine different isolates of Schistosoma mansoni in infected mice. Four of the isolates were selected because they had not knowingly been in contact with the drug (i.e. they were putatively praziquantel-susceptible). Five putatively praziquantel-resistant isolates were chosen because they had been selectively bred for drug-resistance in the laboratory and/or had previously been shown to be relatively resistant to praziquantel in the field. The work was performed in three laboratories in different countries using pre-agreed and comparable experimental protocols. All four praziquantel-susceptible isolates had ED50s estimated to be <100 mg/kg (mean=70+/-7 SD; median=68), while all five putatively praziquantel-resistant isolates had estimated ED50s >100 mg/kg (mean=209+/-48 SD; median=192). Thus, the five praziquantel-resistant isolates, including two that had been subjected to drug pressure during more than 20 passages in mice, had drug ED50s that were approximately three times as great as those of the praziquantel-susceptible isolates. Two of the five isolates in the putatively resistant group had previously been passaged 15 or more times in mice without administration of drug-pressure, but had ED50s consistent with the other three isolates in the group, indicating that the trait of praziquantel-resistance did not necessarily impair biological fitness during laboratory passage. The protocols used here to estimate the praziquantel ED50s of S. mansoni isolates should be useful for establishing and monitoring the drug susceptibility/resistance profiles of parasite isolates freshly obtained from endemic areas, particularly those in which increased usage of the drug is likely to occur.  相似文献   
109.
Approximately 100 strains derived from natural populations of Drosophila melanogaster were tested for the presence or absence of P- element sequences by using two molecular probes derived from internal regions of a full-sized P element. Strains that had been collected from several continents at varying times during the past 60 years were examined. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element probes. In contrast, all recently collected natural populations that were tested carried P-element sequences. The earliest appearance of P elements occurred in collections made during the 1950s and early 1960s in the Americas and during the late 1960s on other continents. The youngest strains that were completely devoid of P elements originated in populations sampled during the mid-1960s in America, but as late as 1974 in populations from the USSR. There are differences in the patterns of hybridization to the two P-element probes between populations from different geographical regions. These differences are consistent with the varying P-M phenotypic properties of these populations. Taken together with the results of phenotypic tests reported in earlier studies, the available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years and suggests that the putative invasion of the Americas possibly preceded by approximately a decade that in Europe, Africa, and the rest of the world.   相似文献   
110.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号