首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4702篇
  免费   352篇
  国内免费   1篇
  2023年   33篇
  2022年   68篇
  2021年   138篇
  2020年   82篇
  2019年   129篇
  2018年   173篇
  2017年   145篇
  2016年   177篇
  2015年   240篇
  2014年   259篇
  2013年   356篇
  2012年   354篇
  2011年   373篇
  2010年   255篇
  2009年   216篇
  2008年   221篇
  2007年   229篇
  2006年   163篇
  2005年   158篇
  2004年   134篇
  2003年   117篇
  2002年   104篇
  2001年   86篇
  2000年   108篇
  1999年   76篇
  1998年   57篇
  1997年   28篇
  1996年   32篇
  1995年   26篇
  1994年   13篇
  1993年   17篇
  1992年   21篇
  1991年   19篇
  1990年   14篇
  1989年   26篇
  1988年   15篇
  1987年   15篇
  1986年   21篇
  1985年   15篇
  1984年   26篇
  1983年   23篇
  1982年   23篇
  1981年   14篇
  1980年   34篇
  1979年   28篇
  1978年   27篇
  1977年   25篇
  1976年   14篇
  1974年   12篇
  1973年   12篇
排序方式: 共有5055条查询结果,搜索用时 15 毫秒
91.
In vertebrates, polysialic acid (PSA) is typically added to the neural cell adhesion molecule (NCAM) in the Golgi by PST or STX polysialyltransferase. PSA promotes plasticity, and its enhanced expression by viral delivery of the PST or STX gene has been shown to promote cellular processes that are useful for repair of the injured adult nervous system. Here we demonstrate a new strategy for PSA induction on cells involving addition of a purified polysialyltransferase from Neisseria meningitidis (PSTNm) to the extracellular environment. In the presence of its donor substrate (CMP-Neu5Ac), PSTNm synthesized PSA directly on surfaces of various cell types in culture, including Chinese hamster ovary cells, chicken DF1 fibroblasts, primary rat Schwann cells, and mouse embryonic stem cells. Similarly, injection of PSTNm and donor in vivo was able to produce PSA in different adult brain regions, including the cerebral cortex, striatum, and spinal cord. PSA synthesis by PSTNm requires the presence of the donor CMP-Neu5Ac, and the product could be degraded by the PSA-specific endoneuraminidase-N. Although PSTNm was able to add PSA to NCAM, most of its product was attached to other cell surface proteins. Nevertheless, the PSTNm-induced PSA displayed the ability to attenuate cell adhesion, promote neurite outgrowth, and enhance cell migration as has been reported for endogenous PSA-NCAM. Polysialylation by PSTNm occurred in vivo in less than 2.5 h, persisted in tissues, and then decreased within a few weeks. Together these characteristics suggest that a PSTNm-based approach may provide a valuable alternative to PST gene therapy.  相似文献   
92.
Pithecellobium dulce has been used in traditional medicine to treat various ailments owing to its restorative properties. The biological activities and chemical profiles of the lipophilic fraction of P. dulce bark and leaves were assessed herein. Fatty acid methyl esters (FAME) and unsaponifiable matter (USM) were prepared and analyzed by GC/MS. A total of 40 compounds were identified in the bark saponifiable fraction, whereas 9 compounds were annotated in the leaves. Palmitic acid methyl ester was the major compound identified accounting for 41.48 % of the bark and 19.03 % of the leaves composition. Besides, linolenic acid methyl ester (22.40 %) and linoleic acid (12.69 %) were annotated in the leaves saponifiable fraction. A total of 63 compounds were detected in the bark USM and 4 compounds were identified in the leaves. Phytol represented the major component in the leaves (52.57 %) followed by lupeol (20.68 %) and lupenone (8.60 %). Meanwhile, n‐dodecane dominated in the bark USM accounting for 24.69 % of the total composition. The leaves and bark lipophilic fractions revealed moderate antioxidant and antibacterial activities. Both extracts showed no antifungal activity. No cytotoxicity was observed for both lipophilic fractions. P. dulce offers a good source of antioxidant compounds that can be introduced to food and pharmaceutical industry.  相似文献   
93.
94.
The current study characterizes and analyzes glow curves obtained from phosphate glass doped with different concentrations of lanthanum. Kinetic parameters of the glow curves obtained from beta‐irradiated phosphate glass samples doped with lanthanum were determined using a newly designed deconvoluted software. The obtained results from the analyses indicated that the glow curves of the phosphate glass samples were composed of five overlapping peaks. The activation energies of the five electron traps were located between 0.622 and 1.133 eV. The obtained kinetic parameters were evaluated using the designed software and another two methods and all revealed good agreement. The first three traps displayed non‐first‐order behaviour, while the two deep traps obeyed nearly first‐order kinetics.  相似文献   
95.
96.
Acetaminophen (APAP) overdose leads to liver injury. NLRP3 inflammasome is a key player in APAP‐induced inflammation. Also, apoptosis and liver regeneration play an important role in liver injury. Therefore, we assessed allicin's protective effect on APAP‐induced hepatotoxicity and studied its effect on NLRP3 inflammasome and apoptosis. Mice in the APAP group were injected by APAP (250 mg/kg, intraperitoneal). The allicin‐treated group received allicin orally (10 mg/kg/d) during 7 days before APAP injection. Serum and hepatic tissues were separated 24 hours after APAP injection. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) were assessed using the colorimetric method. Hepatic NLRP3 inflammasome, caspase‐1, and interleukin‐1β (IL‐1β) were estimated using enzyme‐linked immunosorbent assay. Hepatic Bcl‐2 and Ki‐67 were investigated by immunohistochemistry. APAP significantly increased AST, ALT, and ALP, whereas allicin significantly decreased their levels. Also, APAP significantly decreased albumin and allicin significantly improved it. APAP produced changes in liver morphology, including inflammation and massive coagulative necrosis. Allicin protected the liver from APAP‐induced necrosis, apoptosis, and hepatocellular degeneration via increasing Bcl‐2 and Ki‐67 levels. APAP significantly increased the hepatic MDA, whereas allicin significantly prevented this increase. APAP markedly activated the NLRP3 inflammasome pathway and consequently increased the production of caspase‐1 and IL‐1β. Interestingly, we found that allicin significantly inhibited NLRP3 inflammasome activation, which resulted in decreased caspase‐1 and IL‐1β levels. Allicin has a hepatoprotective effect against APAP‐induced liver injury via the decline of oxidative stress and inhibition of the inflammasome pathway and apoptosis. Therefore, allicin might be a novel tool to halt the progression of APAP‐stimulated hepatotoxicity.  相似文献   
97.
98.
99.
The International Journal of Life Cycle Assessment - Vegetative roofs (VRs) are fully planted roof spaces that offer aesthetic view, storm water management, sound insulation, energy savings, and...  相似文献   
100.
Water is essential for the growth period of crops; however, water unavailability badly affects the growth and physiological attributes of crops, which considerably reduced the yield and yield components in crops. Therefore, a pot experiment was conducted to investigate the effect of foliar phosphorus (P) on morphological, gas exchange, biochemical traits, and phosphorus use efficiency (PUE) of maize (Zea mays L.) hybrids grown under normal as well as water deficit situations at the Department of Agronomy, University of Agriculture Faisalabad, Pakistan in 2014. Two different treatments (control and P @ 8 kg ha−1 ) and four hybrids (Hycorn, 31P41, 65625, and 32B33) of maize were tested by using a randomized complete block design (RCBD) with three replications. Results showed that the water stress caused a remarkable decline in total soluble protein (9.7%), photosynthetic rate (9.4%) and transpiration rate (13.4%), stomatal conductance (10.2%), and internal CO2 rate (20.4%) comparative to well-watered control. An increase of 37.1%, 36.8%, and 24.5% were recorded for proline, total soluble sugar, and total free amino acid, respectively. However, foliar P application minimized the negative impact of drought by improving plant growth, physio-biochemical attributes, and PUE in maize plants under water stress conditions. Among the hybrids tested, the hybrid 6525 performed better both under stress and non-stress conditions. These outcomes confirmed that the exogenous application of P improved drought stress tolerance by modulating growth, physio-biochemical attributes, and PUE of maize hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号