全文获取类型
收费全文 | 1255篇 |
免费 | 47篇 |
国内免费 | 3篇 |
专业分类
1305篇 |
出版年
2023年 | 7篇 |
2022年 | 29篇 |
2021年 | 33篇 |
2020年 | 22篇 |
2019年 | 27篇 |
2018年 | 37篇 |
2017年 | 30篇 |
2016年 | 47篇 |
2015年 | 64篇 |
2014年 | 78篇 |
2013年 | 103篇 |
2012年 | 108篇 |
2011年 | 91篇 |
2010年 | 75篇 |
2009年 | 56篇 |
2008年 | 67篇 |
2007年 | 59篇 |
2006年 | 42篇 |
2005年 | 34篇 |
2004年 | 41篇 |
2003年 | 24篇 |
2002年 | 20篇 |
2001年 | 18篇 |
2000年 | 13篇 |
1999年 | 18篇 |
1998年 | 9篇 |
1997年 | 5篇 |
1996年 | 3篇 |
1995年 | 5篇 |
1993年 | 3篇 |
1992年 | 6篇 |
1991年 | 21篇 |
1990年 | 6篇 |
1989年 | 13篇 |
1988年 | 9篇 |
1987年 | 6篇 |
1986年 | 9篇 |
1985年 | 8篇 |
1984年 | 13篇 |
1983年 | 8篇 |
1982年 | 6篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1975年 | 2篇 |
1972年 | 4篇 |
1970年 | 2篇 |
1969年 | 2篇 |
1968年 | 2篇 |
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
61.
The leishmaniases are a group of diseases caused by protozoan parasites of the genus Leishmania. Various Leishmania species can cause human infection, producing a spectrum of clinical manifestations. It is estimated that 350 million people are at risk, with a global yearly incidence of 1-1.5 million for cutaneous and 500,000 for visceral leishmaniasis (VL). VL is a major cause of morbidity and mortality in East Africa and the Indian subcontinent. Coinfection with HIV enhances the risk of the disease. The only control measure currently available in India is case detection and treatment with antimonial drugs, which are expensive, not always available and cannot be self-administered. Newer drugs like oral miltefosine have not become widely available. Vector and reservoir control is difficult due to the elusive nature of the vector and the diversity of the animal reservoir. A detailed knowledge of immune response to the parasite would help in designing prophylactic and therapeutic strategies against this infection. 相似文献
62.
Summary Allelopathic effect ofEupatorium riparium Regel, a dominant ruderal weed at higher altitudes in Meghalaya state in north-eastern India, was studied on two common sympatric annual weeds,Galinsoga ciliata (Raf.) andG. parviflora Cav. and on soil microbes. Seed germination and radicle and plumule growth of both species ofGalinsoga were suppressed by the aqueous extract and leachate ofE. riparium. Although the leaf leachate, leaf and litter extracts and litter bed caused considerable reduction in leaf area and seed and dry matter production in both species ofGalinsoga, the effect was much more pronounced onG. parviflora. The inhibitory effect was directly correlated with the concentration of the extract and leachate. The soil microbial population and growth of theGalinsoga spp. declined considerably in the experimental pots where the soil had earlier received leachate of different plant parts ofE. riparium growing in it. The presence of the partly decomposed litter ofE. riparium in the pots reduced soil microbial population and growth of the two weeds much more strongly as compared to the litter in the advanced stages of decomposition. The study also revealed that the abundance and colony growth of the two test fungiviz. Trichoderma viride andAspergillus flavus were differentially affected by the allelopathy ofE. riparium; T. viride being favoured andA. flavus inhibited. 相似文献
63.
Tilletia indica teliospores were studied by use of thin sections and freeze-etch replicas. Surfaces of these spores have rodlet patterns which differ from those previously reported for spores of other fungi. The rodlets on T. indica teliospores average 240 nm in length and are not grouped into fascicles. 相似文献
64.
Gopala Ekta Khasa Ashutosh Rao Madhupriya G. P. Rao 《Physiology and Molecular Biology of Plants》2018,24(2):203-210
Nine vegetable plants species exhibiting phytoplasma suspected symptoms of white/purple leaf, little leaf, flat stem, witches’ broom, phyllody and leaf yellowing were observed in experimental fields at Indian Agricultural Research Institute, New Delhi from December 2015 to July 2016. Total DNA extracted from the three healthy and three symptomatic leaves of all the nine vegetables were subjected to PCR assays using phytoplasma specific primers P1/P7 followed by R16F2n/R16R2 and 3Far/3Rev to amplify the 16S rDNA fragments. No amplifications of DNA were observed in first round PCR assays with primer pair P1/P7 from any of the symptomatic samples. However, phytoplasma DNA specific fragments of ~ 1.3 kb were amplified from Apium graveolens L. (two isolates), Brassica oleracea vr. capitata L. (one isolate) and Solanum melongena L. (one isolate) by using 3Far/3Rev primer pair and 1.2 kb fragment was amplified from Lactuca sativa L. (one isolate) by using R16F2n/R16R2 primer pair. No DNA amplification was seen in other symptomatic vegetable samples of tomato, carrot, cucurbit, bitter gourd and Amaranthus species utilizing either P1/P7 primer pair followed by 3Far/3Rev or R16F2n/R16R2 primer pairs. Out of three leafhopper species collected from the symptomatic vegetable fields, only Hishimonus phycitis was found positive for association of phytoplasma. No DNA amplifications were observed in healthy plant samples and insects collected from non-symptomatic fields. Comparative sequence comparison analyses of 16S rDNA of positive found vegetable phytoplasma strains revealed 100% sequence identities among each other and with phytoplasma strains of ‘clover proliferation’ (16SrVI) group. Phytoplasma sequences, virtual RFLPs and phylogenetic analyses of 16S rDNA sequence comparison confirmed the identification of 16SrVI subgroup D strain of phytoplasmas in four vegetables and one leafhopper (HP) species. Further virtual RFLP analysis of 16S rDNA sequence of the vegetables phytoplasma strains confirmed their taxonomic classification with strains of ‘clover proliferation’ subgroup D. Since, H. phycitis feeding on symptomatic vegetable species in the study was also tested positive for the 16SrVI phytoplasma subgroup-D as of vegetables; it may act as potent natural reservoir of 16SrVI-D subgroup of phytoplasmas infecting vegetable and other important agricultural crops. 相似文献
65.
Glareh Azadi Anuj Chauhan Anubhav Tripathi 《Protein science : a publication of the Protein Society》2013,22(9):1258-1265
Dilution of protein–surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta‐galactosidase as model proteins. The fluorescent signature of protein–surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein–surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein–SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein–surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. 相似文献
66.
Susmita K. Singh Dinesh K. Tripathi Pramod K. Singh Sharad Sharma Kishore K. Srivastava 《Applied microbiology and biotechnology》2013,97(13):5825-5837
The proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) multi-gene families code for approximately 10 % of the Mycobacterium tuberculosis (Mtb) genome. These proteins are thought to be virulence factors that participate in impounding the host immune responses. While some members have been studied, the functions of most PE/PPE proteins are yet to be explored. The studies presented here have specifically characterized the roles of one of the PE proteins of Mtb, Rv0160c (PE4), in mycobacterial persistence and in prophylactic efficacy. We have expressed Rv0160c in a non-pathogenic fast-growing Mycobacterium smegmatis strain and demonstrated that the protein improves the survival of mycobacteria in macrophages and in mice. The protein has also shown its effect under physiological stress of bacteria, as evidenced by elevated expression in acidic and in hypoxic conditions. In mice, the level of Rv0160c was noticeably high during the chronic stage of tuberculosis. The seroreactivity of the protein against different categories of tuberculosis patients revealed a strong B-cell humoral response in freshly infected pulmonary tuberculosis patients. In mice, it exhibited increased IL-2, TNF, and IL-6 production. The antigenic properties of the protein directed towards the protective efficacy against the Mtb challenge. All together, our findings have identified Rv0160c as an in vivo expressed immunodominant antigen which plays a crucial role in the pathogenesis of mycobacterial disease and could prove to be a good preventive antigen for tuberculosis. 相似文献
67.
Tripathi RP Verma SS Pandey J Agarwal KC Chaturvedi V Manju YK Srivastva AK Gaikwad A Sinha S 《Bioorganic & medicinal chemistry letters》2006,16(19):5144-5147
A series of 9-substituted tetrahydroacridines were synthesized by nucleophilic substitution of chloro group with different nucleophiles in 9-chlorotetrahydroacridine (2). The latter could be obtained by POCl(3) mediated cyclization of the intermediate enamine, which in turn, was prepared by acid catalyzed condensation of anthranilic acid and cyclohexanone. Most of the compounds on antitubercular evaluation against M. tuberculosis H37 Rv and H37 Ra strains exhibited potent activities with MIC 6.125-0.78 microg/mL comparable to the standard drugs. 相似文献
68.
Nripendra Vikram Singh Shilpa Parashuram Jyotsana Sharma Roopa Sowjanya Potlannagari Dhinesh Babu Karuppannan Ram Krishna Pal Prakash Patil Dhananjay M. Mundewadikar Vipul R. Sangnure P.V. Parvati Sai Arun Naresh V.R. Mutha Bipin Kumar Abhishek Tripathi Sathish Kumar Peddamma Harish Kothandaraman Sailu Yellaboina Dushyant Singh Baghel Umesh K. Reddy 《Saudi Journal of Biological Sciences》2020,27(12):3514-3528
69.
Gamma Interferon Signaling in Macrophage Lineage Cells Regulates Central Nervous System Inflammation and Chemokine Production 下载免费PDF全文
Adora A. Lin Pulak K. Tripathi Allyson Sholl Michael B. Jordan David A. Hildeman 《Journal of virology》2009,83(17):8604-8615
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-γ). Here, we assessed the role of CD4+ T cells and IFN-γ on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-γ, CCL2 (MCP-1), CCL3 (MIP-1α), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-γ had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-γ signaling on macrophage lineage cells was assessed using transgenic mice, called “macrophages insensitive to interferon gamma” (MIIG) mice, that express a dominant-negative IFN-γ receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4+ T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4+ T-cell production of IFN-γ promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.Immune cell recruitment to and infiltration of the central nervous system (CNS) is central to the pathology of a variety of inflammatory neurological diseases, including infectious meningoencephalitis, multiple sclerosis, and cerebral ischemia (59, 60). Chemokines have been shown to be highly upregulated in both human diseases and animal models of neuroinflammation and are thought to be important mediators of immune cell entry into the CNS (59, 60). For example, during experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), the chemokines CCL2 (monocyte chemoattractant protein 1 [MCP-1α]), CCL3 (macrophage inflammatory protein 1α [MIP-1α]), CCL5 (regulated upon activation, T-cell expressed and secreted [RANTES]), and CXCL10 (gamma interferon [IFN-γ]-inducible protein 10 [IP-10]) are produced by either resident CNS cells or infiltrating cells (27) and serve to amplify the ongoing inflammatory response (25, 28). However, in some EAE studies, neither CCL3 nor CXCL10 were required for disease (72, 73). During CNS viral infection, CXCL10 and CCL5 are highly produced in several models (2, 41, 48, 82). In addition, mice deficient in CCR5, which binds (among others) CCL3 and CCL5, do not display impaired CNS inflammation after certain viral infections (13). Thus, the role of chemokines in CNS inflammation is likely complex and dissimilar between autoimmune and viral infection models.IFN-γ is present in the CNS during autoimmunity and infection (7, 54, 69). Several studies suggest that IFN-γ can be a potent inducer of CNS chemokine expression. Adenoviral expression of IFN-γ in the CNS strongly induced CCL5 and CXCL10 mRNA and protein, and this induction was dependent on the presence of the IFN-γ receptor (50). In EAE and Toxoplasma infection, mice deficient in IFN-γ or the IFN-γ receptor demonstrated reduced expression of several chemokines, including CCL2, CCL3, CCL5, and CXCL10 (26, 69). However, given the near-ubiquitous expression of the IFN-γ receptor (44), the mechanisms by which IFN-γ regulates CNS chemokine production remain to be elucidated.We studied neuroinflammation and immune-mediated disease using a well-studied mouse model of infection with lymphocytic choriomeningitis virus (LCMV). Intracranial (i.c.) injection of mice with LCMV results in seizures and death 6 to 8 days after inoculation. The onset of symptoms is associated with a massive influx of mononuclear cells into the cerebrospinal fluid (CSF), meninges, choroid plexus, and ependymal membranes (6, 8, 18), as well as the presence of proinflammatory cytokines (7, 38). The immune response is critical for disease, since infection of irradiated or T-cell-depleted mice leads to persistent infection with very high levels of virus in multiple tissues without the development of lethal meningitis (18, 34, 64). i.c. LCMV infection of β2-microglobulin-deficient mice (β2m−/− mice) also results in meningitis and production of proinflammatory cytokines and chemokines; however, meningitis occurs with a later onset and lower severity compared to wild-type mice (17, 24, 53, 57). Interestingly, i.c. LCMV infection of these mice also causes severe anorexia and weight loss (33, 38, 46, 52, 57) that is mediated by major histocompatibility complex (MHC) class II-restricted, CD4+ T cells (17, 46, 53, 57). Anorexia and weight loss are also observed in wild-type mice, but they succumb to lethal meningitis shortly thereafter (33), making study of this particular aspect of disease difficult. LCMV-induced weight loss, similar to what we have observed in β2m−/− mice also occurs in perforin-deficient mice, which possess CD8+ T cells (37). Although some reports have observed weight loss after peripheral LCMV infection (11, 45), we note that these studies used high doses of the clone 13 strain of LCMV, in contrast to our studies which have used the Armstrong strain of LCMV and orders of magnitude less virus (33, 38, 46, 52, 57). Although we cannot exclude a contribution of peripheral cells to weight loss in our i.c. Armstrong infection model, we previously showed that this weight loss does not occur with peripheral infection with LCMV Armstrong (33, 38), indicating that interactions between the CNS and the immune system are contribute substantially to disease.During LCMV infection, there is biphasic production of IFN-γ: a small, early peak of IFN-γ (most likely produced by NK or NKT cells), followed by T-cell-mediated production of IFN-γ (23, 75). Further, both CD4+ T cells and CD8+ T cells produce large amounts of IFN-γ after LCMV infection and T-cell production of IFN-γ is critical for LCMV-induced weight loss (35). Chemokines, especially CXCL10, CCL5, and CCL2, and their receptors, are upregulated in the brain after i.c. LCMV infection (2, 13). Brain chemokine mRNA expression after i.c. LCMV infection is reduced in IFN-γ-deficient mice and relatively absent in athymic mice (2). However, the mechanism(s) by which T cells and IFN-γ mediate the effects on CNS chemokine expression, cellular infiltration into the CNS, and LCMV-induced anorexic weight loss remain unclear.In the present study, we focused on two major questions. The first question concerned the role of IFN-γ on immune cell recruitment to and chemokine/cytokine production within the CNS? We found that macrophages and myeloid dendritic cells (DCs) require IFN-γ for their accumulation within the CNS. Second, since macrophages and myeloid DCs are the predominant cellular infiltrate, we sought to determine whether IFN-γ signaling on these cells was direct with regard to their recruitment and to chemokine/cytokine production. We found that IFN-γ signaling in macrophage lineage cells contributes significantly to their recruitment, to chemokine production in the CNS, and to anorexic weight loss. Together, these data suggest that much of the proinflammatory effects of IFN-γ in the CNS are mediated by the effects of IFN-γ on CD68-bearing cells. 相似文献
70.
Srivastava SK Tripathi RP Ramachandran R 《The Journal of biological chemistry》2005,280(34):30273-30281
DNA ligases utilize either ATP or NAD+ as cofactors to catalyze the formation of phosphodiester bonds in nicked DNA. Those utilizing NAD+ are attractive drug targets because of the unique cofactor requirement for ligase activity. We report here the crystal structure of the adenylation domain of the Mycobacterium tuberculosis NAD+-dependent ligase with bound AMP. The adenosine nucleoside moiety of AMP adopts a syn-conformation. The structure also captures a new spatial disposition between the two subdomains of the adenylation domain. Based on the crystal structure and an in-house compound library, we have identified a novel class of inhibitors for the enzyme using in silico docking calculations. The glycosyl ureide-based inhibitors were able to distinguish between NAD+- and ATP-dependent ligases as evidenced by in vitro assays using T4 ligase and human DNA ligase I. Moreover, assays involving an Escherichia coli strain harboring a temperature-sensitive ligase mutant and a ligase-deficient Salmonella typhimurium strain suggested that the bactericidal activity of the inhibitors is due to inhibition of the essential ligase enzyme. The results can be used as the basis for rational design of novel antibacterial agents. 相似文献