首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1023篇
  免费   76篇
  国内免费   1篇
  2022年   14篇
  2021年   35篇
  2020年   22篇
  2019年   26篇
  2018年   24篇
  2017年   30篇
  2016年   21篇
  2015年   48篇
  2014年   58篇
  2013年   62篇
  2012年   69篇
  2011年   68篇
  2010年   34篇
  2009年   42篇
  2008年   34篇
  2007年   43篇
  2006年   40篇
  2005年   49篇
  2004年   31篇
  2003年   40篇
  2002年   34篇
  2001年   11篇
  2000年   25篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   13篇
  1993年   7篇
  1992年   10篇
  1991年   15篇
  1990年   11篇
  1989年   12篇
  1988年   13篇
  1987年   10篇
  1986年   9篇
  1985年   12篇
  1984年   9篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   9篇
  1977年   5篇
  1976年   14篇
  1975年   3篇
  1970年   3篇
  1914年   4篇
排序方式: 共有1100条查询结果,搜索用时 15 毫秒
51.
52.
Population structure and history is poorly known in most lichenized ascomycetes. Many species display large-scale infraspecific disjunctions, which have been explained alternately by range fragmentation in species of high age and widespread long-distance dispersal. Using the lichen Cavernularia hultenii, which is widely disjunct across North America and Europe, Pleistocene and Holocene population history was inferred. The internal transcribed spacer (ITS) and part of the the intergenic spacer (IGS) region of the nuclear ribosomal DNA were sequenced in 300 individuals representing 62 populations across the range of the species. While four ancestral haplotypes are found in all areas, none of the observed tip haplotypes is present in more than one of the three part ranges. Although this is evidence for a past fragmentation event, nested clade analysis (NCA) remains equivocal in the choice between allopatric fragmentation and long-distance dispersal. Mismatch distributions indicate exponential population growth, probably during postglacial invasion of C. hultenii into formerly glaciated areas of western North America. The presence of one southern and at least one northern glacial refugium in South Central Alaska is inferred. Evidence for another refugium in the Queen Charlotte Islands or Alexander Archipelago is inconclusive because of sparse sampling. However, a range expansion was not confirmed unambiguously by NCA. The limited power of NCA to infer past range fragmentations and expansions is due apparently to the shallow haplotype network and widespread ancestral haplotypes. This can be explained by slow genetic drift causing incomplete removal of ancestral haplotypes from the postfragmentation and postexpansion areas.  相似文献   
53.
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.  相似文献   
54.
55.
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.  相似文献   
56.
Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.  相似文献   
57.
We examined the hypothesis that the procumbent growth habit of the rare, columnar cactus Stenocereus eruca is in part the result of a diminution of the mechanical properties of stem tissues by comparing the properties of S. eruca plants with those of the putatively closely related semi-erect shrub S. gummosus. Intact stems and surgically removed anatomically comparable regions of the stems of both species were tested in bending and tension to determine their Young's modulus and breaking stress. A computer program was used to evaluate the contribution of each region to the capacity of entire stems to resist bending forces. Our analyses indicate that the principal stiffening agent in the stems of both species is a peripheral tissue complex (= epidermis and collenchyma in the primary plant body) that has a significantly higher tensile breaking stress and greater extensibility for S. gummosus than that of S. eruca. Computer simulations indicate that the wood of either species contributes little to bending stiffness, except in very old portions of S. gummosus stems, because of its small volume and central location in the stem. These and other observations are interpreted to support the hypothesis that S. eruca evolved a procumbent growth habit as the result of manifold developmental alterations some of which reduced the capacity of tissues to support the weight of stems.  相似文献   
58.
Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.  相似文献   
59.
60.
Mucosal epithelial linings function as physical barriers against microbes. In addition, they participate in the first line of host defence by production of a variety of proinflammatory mediators when exposed to microbes and microbial agents. Here, we use a human urinary tract infection model to demonstrate that organ- and cell-specific innate responses induced by lipopolysaccharides (LPS) present on Gram-negative bacteria correlates with the expression of Toll-like receptor 4 (TLR4). The presence of TLR4 on human bladder epithelial cells enables them to rapidly respond to bacterial infections in vitro and in vivo . In contrast, TLR4 is not expressed on human proximal tubule cells isolated from the renal cortex, which may explain the cortical localization of bacteria in pyelonephritis. TLR4-negative renal epithelial cells, A498, are non-responsive to purified LPS, however, they respond to viable bacteria via a mannose-sensitive attachment-mediated pathway. To identify LPS components recognised by bladder epithelial cells, a bacterial lipid A mutant and LPS of different chemotypes were tested. Full interleukin 8 induction required hexa-acylated lipid A and was decreased by between 50% and 70% in the presence of O-antigen. Taken together, we propose that multiple independent pathways, which are organ- and cell-specifically expressed, mediate bacterial recognition and determine the outcome of innate responses to infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号