首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   71篇
  2021年   7篇
  2019年   8篇
  2018年   5篇
  2016年   12篇
  2015年   15篇
  2014年   20篇
  2013年   25篇
  2012年   27篇
  2011年   34篇
  2010年   26篇
  2009年   26篇
  2008年   30篇
  2007年   38篇
  2006年   22篇
  2005年   31篇
  2004年   23篇
  2003年   31篇
  2002年   25篇
  2001年   25篇
  2000年   16篇
  1999年   19篇
  1998年   9篇
  1997年   10篇
  1996年   11篇
  1995年   15篇
  1994年   11篇
  1993年   16篇
  1992年   12篇
  1991年   19篇
  1990年   18篇
  1989年   19篇
  1988年   11篇
  1987年   10篇
  1986年   14篇
  1985年   7篇
  1984年   5篇
  1983年   11篇
  1982年   11篇
  1981年   6篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   9篇
  1974年   4篇
  1973年   7篇
  1972年   4篇
  1970年   4篇
  1968年   4篇
排序方式: 共有767条查询结果,搜索用时 15 毫秒
41.
Using indirect immunofluorescence visualization techniques we investigated the in situ distribution of RNA polymerase B on Drosophila melanogaster polytene chromosomes. The enzyme was found at many sites distributed throughout the genome in a pattern clearly distinct from that observed for histone H1, but it was especially concentrated in puffs induced by heat shock.  相似文献   
42.
Ionic fluxes in Na channels of myelinated axons show ionic competition, block, and deviations from simple flux independence. These phenomena are particularly evident when external Na+ ions are replaced by other permeant or impermeant ions. The observed currents require new flux equations not based on the concepts of free diffusion. A specific permeability model for the Na channel is developed from Eyring rate theory applied to a chain of saturable binding sites. There are four energy barriers in the pore and only one ion is allowed inside at a time. Deviations from independence arise from saturation. The model shows that ionic permeability ratios measured from zero-current potentials can differ from those measured from relative current amplitudes or conductances. The model can be fitted to experiments with various external sodium substitutes by varying only two parameters: For each ion the height of the major energy barrier (the selectivity filter) determines the biionic zero-current potential and the depth of the energy well (binding site) just external to that barrier then determines the current amplitudes. Voltage clamp measurements with myelinated nerve fibers are given showing numerous examples of deviations from independence in ionic fluxes. Strong blocks of ionic currents by guanidinium compounds and Tl+ ions are fitted by binding within the channel with apparent dissociation constants in the range 50-122 mM. A small block with high Na+ concentrations can be fitted by Na+ ion binding with a dissociation constant of 368 mM. The barrier model is given a molecular interpretation that includes stepwise dehydration of the permeating ion as it interacts with an ionized carboxylic acid.  相似文献   
43.
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.  相似文献   
44.
Gastrodia elata, a fully mycoheterotrophic orchid without photosynthetic ability, only grows symbiotically with the fungus Armillaria. The mechanism of carbon distribution in this mycoheterotrophy is unknown. We detected high sucrose concentrations in all stages of Gastrodia tubers, suggesting sucrose may be the major sugar transported between fungus and orchid. Thick symplasm‐isolated wall interfaces in colonized and adjacent large cells implied involvement of sucrose importers. Two sucrose transporter (SUT)‐like genes, GeSUT4 and GeSUT3, were identified that were highly expressed in young Armillaria‐colonized tubers. Yeast complementation and isotope tracer experiments confirmed that GeSUT4 functioned as a high‐affinity sucrose‐specific proton‐dependent importer. Plasma‐membrane/tonoplast localization of GeSUT4‐GFP fusions and high RNA expression of GeSUT4 in symbiotic and large cells indicated that GeSUT4 likely functions in active sucrose transport for intercellular allocation and intracellular homeostasis. Transgenic Arabidopsis overexpressing GeSUT4 had larger leaves but were sensitive to excess sucrose and roots were colonized with fewer mutualistic Bacillus, supporting the role of GeSUT4 in regulating sugar allocation. This is not only the first documented carbon import system in a mycoheterotrophic interaction but also highlights the evolutionary importance of sucrose transporters for regulation of carbon flow in all types of plant‐microbe interactions.  相似文献   
45.
Recently, we screened several KV channels for possible dependence on plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). The channels were expressed in tsA-201 cells and the PI(4,5)P2 was depleted by several manipulations in whole-cell experiments with parallel measurements of channel activity. In contrast to reports on excised-patches using Xenopus laevis oocytes, we found only KV7, but none of the other tested KV channels, to be strongly dependent on PI(4,5)P2. We now have extended our study to KV1.2 channels, a KV channel we had not previously tested, because a new published study on excised patches showed regulation of the voltage-dependence of activation by PI(4,5)P2. In full agreement with those published results, we found a reduction of current amplitude by ~20% after depletion of PI(4,5)P2 and a small left shift in the activation curve of KV1.2 channels. We also found a small reduction of KV11.1 (hERG) currents that was not accompanied by a gating shift. In conclusion, our whole-cell methods yield a PI(4,5)P2-dependence of KV1.2 currents in tsA-201 cells that is comparable to findings from excised patches of Xenopus laevis oocytes. We discuss possible physiological rationales for PI(4,5)P2 sensitivity of some ion channels and insensitivity of others.  相似文献   
46.
Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPRmt) to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPRmt, and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS–induced UPRmt. Activation of the UPRmt, but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS–induced UPRmt, suggesting that surveillance-activated defenses specifically inhibit the UPRmt but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD), and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.  相似文献   
47.
Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.  相似文献   
48.
Store-operated Ca2+ channels (SOCs) are activated by depletion of intracellular Ca2+ stores following agonist-mediated Ca2+ release. Previously we demonstrated that Ca2+ influx through SOCs elicits exocytosis efficiently in pancreatic duct epithelial cells (PDEC). Here we describe the biophysical, pharmacological, and molecular properties of the duct epithelial SOCs using Ca2+ imaging, whole-cell patch-clamp, and molecular biology. In PDEC, agonists of purinergic, muscarinic, and adrenergic receptors coupled to phospholipase C activated SOC-mediated Ca2+ influx as Ca2+ was released from intracellular stores. Direct measurement of [Ca2+] in the ER showed that SOCs greatly slowed depletion of the ER. Using IP3 or thapsigargin in the patch pipette elicited inwardly rectifying SOC currents. The currents increased ∼8-fold after removal of extracellular divalent cations, suggesting competitive permeation between mono- and divalent cations. The current was completely blocked by high doses of La3+ and 2-aminoethoxydiphenyl borate (2-APB) but only partially depressed by SKF-96365. In polarized PDEC, SOCs were localized specifically to the basolateral membrane. RT-PCR screening revealed the expression of both STIM and Orai proteins for the formation of SOCs in PDEC. By expression of fluorescent STIM1 and Orai1 proteins in PDEC, we confirmed that colocalization of the two proteins increases after store depletion. In conclusion, basolateral Ca2+ entry through SOCs fills internal Ca2+ stores depleted by external stimuli and will facilitate cellular processes dependent on cytoplasmic Ca2+ such as salt and mucin secretion from the exocrine pancreatic ducts.  相似文献   
49.
In the tank bioleaching process, maximising solid loading and mineral availability, the latter through decreasing particle size, are key to maximising metal extraction. In this study, the effect of particle size distribution on bioleaching performance and microbial growth was studied through applying knowledge based on medical geology research to understand the adverse effects of suspended fine pyrite particles. Small-scale leaching studies, using pyrite concentrate fractions (106–75, 75–25, ?25 μm fines), were used to confirm decreasing performance with decreasing particle size (D 50 <40 μm). Under equivalent experimental conditions, the generation of the reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals from pyrite was illustrated. ROS generation measured from the different pyrite fractions was found to increase with increasing pyrite surface area loading (1.79–74.01 m2 L?1) and Fe2+ concentration (0.1–2.8 g?L?1) in solution. The highest concentration of ROS was measured from the finest fraction of pyrite (0.85 mM) and from the largest concentration of Fe2+ (0.78 mM). No ROS was detected from solutions containing only Fe3+ under the same conditions tested. The potential of ROS to inhibit microbial performance under bioleaching conditions was demonstrated. Pyrite-free Sulfolobus metallicus cultures challenged with hydrogen peroxide (0.5–2.5 mM) showed significant decrease in both cell growth and Fe2+ oxidation rates within the concentration range 1.5–2.5 mM. In combination, the results from this study suggest that conditions of large pyrite surface area loading, coupled with high concentrations of dissolved Fe2+, can lead to the generation of ROS, resulting in oxidative stress of the microorganisms.  相似文献   
50.
BackgroundWith the availability of massive SNP data for several economically important cattle breeds, haplotype tests have been performed to identify unknown recessive disorders. A number of so-called lethal haplotypes, have been uncovered in Holstein Friesian cattle and, for at least seven of these, the causative mutations have been identified in candidate genes. However, several lethal haplotypes still remain elusive. Here we report the molecular genetic causes of lethal haplotype 5 (HH5) and cholesterol deficiency (CDH). A targeted enrichment for the known genomic regions, followed by massive parallel sequencing was used to interrogate for causative mutations in a case/control approach.MethodsTargeted enrichment for the known genomic regions, followed by massive parallel sequencing was used in a case/control approach. PCRs for the causing mutations were developed and compared to routine imputing in 2,100 (HH5) and 3,100 (CDH) cattle.ResultsHH5 is caused by a deletion of 138kbp, spanning position 93,233kb to 93,371kb on chromosome 9 (BTA9), harboring only dimethyl-adenosine transferase 1 (TFB1M). The deletion breakpoints are flanked by bovine long interspersed nuclear elements Bov-B (upstream) and L1ME3 (downstream), suggesting a homologous recombination/deletion event. TFB1M di-methylates adenine residues in the hairpin loop at the 3’-end of mitochondrial 12S rRNA, being essential for synthesis and function of the small ribosomal subunit of mitochondria. Homozygous TFB1M-/- mice reportedly exhibit embryonal lethality with developmental defects. A 2.8% allelic frequency was determined for the German HF population. CDH results from a 1.3kbp insertion of an endogenous retrovirus (ERV2-1-LTR_BT) into exon 5 of the APOB gene at BTA11:77,959kb. The insertion is flanked by 6bp target site duplications as described for insertions mediated by retroviral integrases. A premature stop codon in the open reading frame of APOB is generated, resulting in a truncation of the protein to a length of only <140 amino acids. Such early truncations have been shown to cause an inability of chylomicron excretion from intestinal cells, resulting in malabsorption of cholesterol. The allelic frequency of this mutation in the German HF population was 6.7%, which is substantially higher than reported so far. Compared to PCR assays inferring the genetic variants directly, the routine imputing used so far showed a diagnostic sensitivity of as low as 91% (HH5) and 88% (CDH), with a high specificity for both (≥99.7%).ConclusionWith the availability of direct genetic tests it will now be possible to more effectively reduce the carrier frequency and ultimately eliminate the disorders from the HF populations. Beside this, the fact that repetitive genomic elements (RE) are involved in both diseases, underline the evolutionary importance of RE, which can be detrimental as here, but also advantageous over generations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号