首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1927篇
  免费   112篇
  2023年   5篇
  2022年   43篇
  2021年   66篇
  2020年   34篇
  2019年   35篇
  2018年   70篇
  2017年   42篇
  2016年   80篇
  2015年   92篇
  2014年   89篇
  2013年   109篇
  2012年   118篇
  2011年   137篇
  2010年   93篇
  2009年   68篇
  2008年   111篇
  2007年   125篇
  2006年   91篇
  2005年   99篇
  2004年   73篇
  2003年   71篇
  2002年   55篇
  2001年   17篇
  2000年   27篇
  1999年   27篇
  1998年   14篇
  1997年   5篇
  1992年   23篇
  1991年   12篇
  1990年   15篇
  1989年   15篇
  1988年   17篇
  1987年   13篇
  1986年   7篇
  1985年   10篇
  1984年   14篇
  1983年   10篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   11篇
  1974年   8篇
  1973年   6篇
  1972年   5篇
  1971年   6篇
  1968年   4篇
  1967年   4篇
  1965年   5篇
排序方式: 共有2039条查询结果,搜索用时 9 毫秒
41.
42.
The U1 small nuclear ribonucleoprotein (snRNP)-specific U1C protein participates in 5′ splice site recognition and regulation of pre-mRNA splicing. Based on an RNA-Seq analysis in HeLa cells after U1C knockdown, we found a conserved, intra-U1 snRNP cross-regulation that links U1C and U1-70K expression through alternative splicing and U1 snRNP assembly. To investigate the underlying regulatory mechanism, we combined mutational minigene analysis, in vivo splice-site blocking by antisense morpholinos, and in vitro binding experiments. Alternative splicing of U1-70K pre-mRNA creates the normal (exons 7–8) and a non-productive mRNA isoform, whose balance is determined by U1C protein levels. The non-productive isoform is generated through a U1C-dependent alternative 3′ splice site, which requires an adjacent cluster of regulatory 5′ splice sites and binding of intact U1 snRNPs. As a result of nonsense-mediated decay (NMD) of the non-productive isoform, U1-70K mRNA and protein levels are down-regulated, and U1C incorporation into the U1 snRNP is impaired. U1-70K/U1C-deficient particles are assembled, shifting the alternative splicing balance back towards productive U1-70K splicing, and restoring assembly of intact U1 snRNPs. Taken together, we established a novel feedback regulation that controls U1-70K/U1C homeostasis and ensures correct U1 snRNP assembly and function.  相似文献   
43.
Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.  相似文献   
44.
Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-“vector” it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAcβ bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1–3Galβ (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.  相似文献   
45.
46.
Numerous studies revealed high diversity of T4-like bacteriophages in various environments, but so far, little is known about T4-like virus diversity in freshwater bodies, particularly in eutrophic lakes. The present study was aimed at elucidating molecular diversity of T4-like bacteriophages in eutrophic Lake Kotokel located near Lake Baikal by partial sequencing of the major capsid genes (g23) of T4-like bacteriophages. The majority of g23 fragments from Lake Kotokel were most similar to those from freshwater lakes and paddy fields. Despite the proximity and direct water connection between Lake Kotokel and Lake Baikal, g23 sequence assemblages from two lakes were different. UniFrac analysis showed that uncultured T4-like viruses from Lake Kotokel tended to cluster with those from the distant lake of the same trophic status. This fact suggested that the trophic conditions affected the formation of viral populations, particularly of T4-like viruses, in freshwater environments.  相似文献   
47.
Black microcolonial fungi (MCF) and black yeasts are among the most stress-resistant eukaryotic organisms known on Earth. They mainly inhabit bare rock surfaces in hot and cold deserts of all regions of the Earth, but some of them have a close phylogenetic relation to human pathogenic black fungi which makes them important model organisms also with respect to clinical mycology. The environment of those fungi is especially characterized by extreme changes from humidity to long periods of desiccation and extreme temperature differences. A key to the understanding of MCF ecology is the question about metabolic activity versus dormancy in the natural environments. In this study, the time lag from the desiccated state to rehydration and full metabolic activity and growth was measured and defined in accordance with simulated environmental conditions. The ability to survive after desiccation and the speed of rehydration as well as changes of the whole cell protein pattern are demonstrated. Whereas both mesophilic strains—Exophiala jeanselmei and Knufia perforans (=Coniosporium perforans)—show a clear reaction toward desiccation by production of small proteins, Cryomyces antarcticus—the extremotolerant MCF—does not show any response to desiccation but seems just to down-regulate its metabolism. Data on intracellular sugar suggest that both trehalose and mannitol might play a cell protective role in those fungi.  相似文献   
48.
We previously reported that fragments of exogenous double-stranded DNA can be internalized by mouse bone marrow cells without any transfection. Our present analysis shows that only 2% of bone marrow cells take up the fragments of extracellular exogenous DNA. Of these, ~ 45% of the cells correspond to CD34 + hematopoietic stem cells. Taking into account that CD34 + stem cells constituted 2.5% of the total cell population in the bone marrow samples analyzed, these data indicate that as much as 40% of CD34 + cells readily internalize fragments of extracellular exogenous DNA. This suggests that internalization of fragmented dsDNA is a general feature of poorly differentiated cells, in particular CD34 + bone marrow cells.  相似文献   
49.
There have been obtained evidences that not only GM1, but also other main brain gangliosides (GD1a, GD1b, and GT1b) increase viability of cells of the neuronal line PC12 under action of H2O2. By the example of GM1 and GD1a, gangliosides have been shown to produce a protective effect on PC12 cells under conditions of oxidative stress both at micro- and nanomolar concentrations that are physiological concentrations of gangliosides in cerebrospinal fluid. For the first time, GM1 at nanomolar concentrations was shown to decrease the H2O2-induced formation of reactive oxygen species (ROS). It was found that in the presence of inhibitor of tyrosine kinase Trk of receptors K-252a, GM1 at concentrations of 10 μM and 10 nM lost its ability to produce such metabolic effects as a decrease of ROS accumulation and of the degree of oxidative inactivation of Na+,K+-ATPase in PC12 cells, as well as ceased to increase viability of these cells under conditions of oxidative stress. The dependence of protective and metabolic effects of gangliosides GM1 in PC12 cells treated with H2O2 on modulation of activity of activity of tyrosine kinase Trk receptors (i.e., from the same signal system) agrees with concept about the essential role of oxidant effect of GM1 in its increase of cell viability.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号