首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1634篇
  免费   109篇
  2023年   5篇
  2022年   28篇
  2021年   57篇
  2020年   38篇
  2019年   33篇
  2018年   58篇
  2017年   30篇
  2016年   68篇
  2015年   88篇
  2014年   78篇
  2013年   97篇
  2012年   107篇
  2011年   125篇
  2010年   82篇
  2009年   61篇
  2008年   88篇
  2007年   100篇
  2006年   82篇
  2005年   78篇
  2004年   70篇
  2003年   74篇
  2002年   50篇
  2001年   20篇
  2000年   21篇
  1999年   14篇
  1998年   12篇
  1997年   4篇
  1992年   10篇
  1991年   18篇
  1990年   9篇
  1989年   11篇
  1988年   10篇
  1987年   13篇
  1986年   5篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1979年   8篇
  1978年   3篇
  1976年   4篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1970年   3篇
  1969年   3篇
  1968年   7篇
  1967年   5篇
  1965年   4篇
排序方式: 共有1743条查询结果,搜索用时 46 毫秒
81.
Oligomerization of soluble Fas antigen induces its cytotoxicity   总被引:6,自引:0,他引:6  
Soluble Fas antigen can protect cells against Fas-mediated apoptosis. High level soluble Fas antigen characteristic for blood of patients with autoimmune disease or cancer is believed to prevent the elimination of autoimmune lymphocytes or tumor cells. Here we first report that human recombinant FasDeltaTM, i.e. soluble Fas generated by alternative splicing of the intact exon 6, is capable of inducing death of transformed cells by "reverse" apoptotic signaling via transmembrane Fas ligand. FasDeltaTM, as well as transmembrane Fas antigen, can be either monomeric or oligomeric, and both its forms are efficient in blocking Fas-mediated apoptosis, although the cytotoxic activity is exhibited solely by the latter. An in vivo analysis of soluble Fas antigen showed that unlike in healthy controls, nearly the total FasDeltaTM present in sera of rheumatoid arthritis patients was oligomeric. This resulted in suppression of cell proliferation in the experimental sera and in its promotion in controls. Thus, oligomerization/depolymerization of soluble Fas antigen can regulate its activity and contribute to the pathogenesis of autoimmune diseases and cancer.  相似文献   
82.
It is often assumed mutant frequencies, as measured in a DNA sample, faithfully represent basic mutation rates associated with these mutations. This paradigm was extremely helpful for in vitro studies of the mechanisms of mutagenesis/repair and causes of mutations. However, in vivo, mutant fractions appear to vary dramatically and randomly from sample to sample. It's unlikely that basic mutational rates vary so much. Such variations are probably caused by clonal expansions of mutants within tissue. Whether a particular tissue sample includes an expansion or not, is a matter of chance, which explains the observed random fluctuations of mutant fractions. Well-known examples of clonal expansions involve pathological conditions such as cancer or mitochondrial disease. It is less appreciated that even in normal tissue, expansions of somatic mutants create local deviations from the "expected" mutant frequencies. The sizes of clonal expansions appear to span a wide range and thus, may affect samples of various sizes, from individual cells to individuals. In conclusion, human body appears to be a sort of a "gambling ground" for clonally expanding mutants. We speculate that expansion of early mutants rather than de novo mutation at old age may be the major source of at least some aging-specific mutants in our bodies.  相似文献   
83.
84.
85.
One of the objectives of the HUman MicroNucleus (HUMN) project is to identify the methodological variables that have an important impact on micronucleus (MN) or micronucleated (MNed) cell frequencies measured in human lymphocytes using the cytokinesis-block micronucleus assay. In a previous study we had shown that the scoring criteria used were likely to be an important variable. To determine the extent of residual variation when laboratories scored cells from the same cultures using the same set of standard scoring criteria, an inter-laboratory slide-scoring exercise was performed among 34 laboratories from 21 countries with a total of 51 slide scorers involved. The results of this study show that even under these optimized conditions there is a great variation in the MN frequency or MNed cell frequency obtained by individual laboratories and scorers. All laboratories ranked correctly the MNed cell frequency in cells from cultures that were unirradiated, or exposed to 1 or 2Gy of gamma rays. The study also estimated that the intra-scorer median coefficient of variation for duplicate MNed cell frequency scores is 29% for unexposed cultures and 14 and 11% for cells exposed to 1 and 2Gy, respectively. These values can be used as a standard for quality or acceptability of data in future studies. Using a Poisson regression model it was estimated that radiation dose explained 67% of the variance, while staining method, cell sample, laboratory, and covariance explained 0.6, 0.3, 6.5, and 25.6% of the variance, respectively, leaving only 3.1% of the variance unexplained. As part of this exercise, nucleoplasmic bridges were also estimated by the laboratories; however, inexperience in the use of this biomarker of chromosome rearrangement was reflected in the much greater heterogeneity in the data and the unexplained variation estimated by the Poisson model. The results of these studies indicate clearly that even after standardizing culture and scoring conditions it will be necessary to calibrate scorers and laboratories if MN, MNed cell and nucleoplasmic bridge frequencies are to be reliably compared among laboratories and among populations.  相似文献   
86.
Zhao L  Beyer NJ  Borisova SA  Liu HW 《Biochemistry》2003,42(50):14794-14804
In our study of the biosynthesis of D-desosamine in Streptomyces venezuelae, we have cloned and sequenced the entire desosamine biosynthetic cluster. The deduced product of one of the genes, desR, in this cluster shows high sequence homology to beta-glucosidases, which catalyze the hydrolysis of the glycosidic linkages, a function not required for the biosynthesis of desosamine. Disruption of the desR gene led to the accumulation of glucosylated methymycin/neomethymycin products, all of which are biologically inactive. It is thus conceivable that methymycin/neomethymycin may be produced as inert diglycosides, and the DesR protein is responsible for transforming these antibiotics from their dormant to their active forms. This hypothesis is supported by the fact that the translated desR gene has a leader sequence characteristic of secretory proteins, allowing it to be transported through the cell membrane and hydrolyze the modified antibiotics extracellularly to activate them. Expression of desR and biochemical characterization of the purified protein confirmed the catalytic function of this enzyme as a beta-glycosidase capable of catalyzing the hydrolysis of glucosylated methymycin/neomethymycin produced by S. venezuelae. These results provide strong evidence substantiating glycosylation/deglycosylation as a likely self-resistance mechanism of S. venezuelae. However, further experiments have suggested that such a glycosylation/deglycosylation is only a secondary self-defense mechanism in S. venezuelae, whereas modification of 23S rRNA, which is the target site for methymycin and its derivatives, by PikR1 and PikR2 is a primary self-resistance mechanism. Considering that postsynthetic glycosylation is an effective means to control the biological activity of macrolide antibiotics, the availability of macrolide glycosidases, which can be used for the activation of newly formed antibiotics that have been deliberately deactivated by engineered glycosyltransferases, may be a valuable part of an overall strategy for the development of novel antibiotics using the combinatorial biosynthetic approach.  相似文献   
87.
DNA polymerase mu (pol mu) is a member of the pol X family of DNA polymerases, and it shares a number of characteristics of both DNA polymerase beta (pol beta) and terminal deoxynucleotidyl transferase (TdT). Because pol beta has been shown to perform translesion DNA synthesis past cisplatin (CP)- and oxaliplatin (OX)-GG adducts, we determined the ability of pol mu to bypass these lesions. Pol mu bypassed CP and OX adducts with an efficiency of 14-35% compared to chain elongation on undamaged DNA, which is second only to pol eta in terms of bypass efficiency. The relative ability of pol mu to bypass CP and OX adducts was dependent on both template structure and sequence context. Since pol mu has been shown to be more efficient on gapped DNA templates than on primed single-stranded DNA templates, we determined the ability of pol mu to bypass Pt-DNA adducts on both primed single-stranded and gapped templates. The bypass of Pt-DNA adducts by pol mu was highly error-prone on all templates, resulting in 2, 3, and 4 nt deletions. We postulate that bypass of Pt-DNA adducts by pol mu may involve looping out the Pt-GG adduct to allow chain elongation downstream of the adduct. This reaction appears to be facilitated by the presence of a downstream "acceptor" and a gap large enough to provide undamaged template DNA for elongation past the adduct, although gapped DNA is clearly not required for bypass.  相似文献   
88.
The authors used computed tomography (CT) as a basis to analyze the anatomic status of the bronchopulmonary system in 28 patients undergone resection of a part of the lung in childhood for chronic nonspecific lung inflammations and malformations. The findings confirmed the high diagnostic value of CT in the evaluation of the lung in different postoperative periods and showed a certain range of changes varying from significant in the lung operated on to progression of the primary disease to the collateral lung.  相似文献   
89.
MARCO is a type II transmembrane protein of the class A scavenger receptor family. It has a short N-terminal cytoplasmic domain, a transmembrane domain, and a large extracellular part composed of a 75-residue long spacer domain, a 270-residue collagenous domain, and a 99-residue long scavenger receptor cysteine-rich (SRCR) domain. Previous studies have indicated a role for this receptor in anti-microbial host defense functions. In this work we have produced the extracellular part of MARCO as a recombinant protein, and analyzed its binding properties. The production of this protein, soluble MARCO (sMARCO), has made it possible for the first time to study MARCO and its binding properties in a cell-free system. Using circular dichroism analyses, a protease-sensitive assay, and rotary shadowing electron microscopy, sMARCO was shown to have a triple-helical collagenous structure. Rotary shadowing also demonstrated that the molecules often associate with each other via the globes. sMARCO was found to bind avidly both heat-killed and living bacteria. Lipopolysaccharide, an important component of the outer membrane of Gram-negative bacteria, was shown to be a ligand of MARCO. Studies with different bacterial strains indicated that the O-side chain of lipopolysaccharide is not needed for the bacterial recognition. Finally, the C-terminal SRCR domain was also produced as a recombinant protein, and its bacteria-binding capability was studied. Although the transfection experiments with transmembrane MARCO variants have indicated a crucial role for this domain in bacterial binding, the monomeric domain exhibited low, barely detectable bacteria-binding activity. Thus, it is possible that cooperation between the SRCR domain and the collagenous domain is needed for high-affinity bacterial binding, or that the SRCR domain has to be in a trimeric form to effectively bind to bacteria.  相似文献   
90.
Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors approximately 2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号