首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92484篇
  免费   6734篇
  国内免费   6400篇
  105618篇
  2024年   201篇
  2023年   1254篇
  2022年   2940篇
  2021年   4868篇
  2020年   3193篇
  2019年   4016篇
  2018年   3956篇
  2017年   2866篇
  2016年   4051篇
  2015年   5841篇
  2014年   6886篇
  2013年   7247篇
  2012年   8492篇
  2011年   7736篇
  2010年   4482篇
  2009年   4186篇
  2008年   4775篇
  2007年   4146篇
  2006年   3532篇
  2005年   2820篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   118篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
短尾拟鲿分类地位的探讨   总被引:3,自引:0,他引:3  
短尾拟鲿PSEUDOBAGRUS BREVICAUDATUS(Wu)原名短(鱼危)Leiocassis brevicaudatus Wu是伍献文先生1930年命名的一个新种1。张春霖先生在《中国贴类志》中将其改称为短尾黄颖鱼PSEUDOBAGRUS BREVICAUDATUS2。湖北省水生生物研究所在《长江鱼类》一书中仍称为短尾跪2,并有较细致的形态描述。成庆泰先生等主要依据脂鳍长短和尾鳍之中央鳍条至少为最长鳍条的2/3等特征,将其归人拟偿属,称短尾拟绘4。1990-1993年,我们在进行嘉陵江绘科鱼类骨骼的比较研究中,发现短尾拟嵘骨骼的许多特征与跪属的粗唇(鱼危)Leiocassis crassilabris GUnther等相似,而与拟鳄属的细体拟偿Pseudobagrus pratti (GUnther)、切尾拟(鱼危)Pseudobagrus truncatus (Regan)和乌苏拟(鱼危)Pseudobagrus ussuriensis(Dybowski)等差异明显。    相似文献   
952.
Abstract: The relationship between iron-dependent fetal mouse spinal cord neuron injury and the generation of endogenous lipid hydroperoxides (LOOHs) has been investigated. Cultured spinal cord neurons were incubated with ferrous iron (3–200 µM). Cell viability was measured in terms of the uptake of α-[methyl-3H]aminoisobutyric acid ([3H]AIB). Both endogenously and iron-generated LOOH, i.e., free fatty acid hydroperoxide (FFAOOH), phosphatidylethanolamine hydroperoxide (PEOOH), and phosphatidylcholine hydroperoxide (PCOOH), were measured directly by an HPLC-chemiluminescence (HPLC-CL) assay. The FFAOOH, PEOOH, and PCOOH levels in neurons incubated with 200 µM Fe2+ for 40 min were, respectively, 22-, 158-, and sevenfold higher than those in non-iron-exposed cultures, demonstrating that phosphatidylethanolamine (PE) was most sensitive to peroxidation. The dose-response and time course of Fe2+-induced generation of these LOOHs were also established. In both experiments, the LOOH levels were correlated directly with loss of neuronal viability, suggesting strongly a direct relationship between lipid peroxidation and cell injury. On examination of the time course of the LOOH generation, an immediate increase in PEOOH and PCOOH levels with only 30 s of Fe2+ incubation was observed. In contrast, a lag phase in the increase in FFAOOH level (2 min after Fe2+ addition) suggested a delay in the activation of phospholipase A2 (PLA2) required for the hydrolysis and generation of FFAOOH. This culture system provides an excellent model for screening antioxidant neuroprotective compounds with regard to their ability to protect against iron-dependent peroxidative injury and the relationship of the neuroprotection to inhibition of lipid peroxidation and/or PLA2.  相似文献   
953.
We report the purification of a presynaptic "particle web" consisting of approximately 50 nm pyramidally shaped particles interconnected by approximately 100 nm spaced fibrils. This is the "presynaptic grid" described in early EM studies. It is completely soluble above pH 8, but reconstitutes after dialysis against pH 6. Interestingly, reconstituted particles orient and bind PSDs asymmetrically. Mass spectrometry of purified web components reveals major proteins involved in the exocytosis of synaptic vesicles and in membrane retrieval. Our data support the idea that the CNS synaptic junction is organized by transmembrane adhesion molecules interlinked in the synaptic cleft, connected via their intracytoplasmic domains to the presynaptic web on one side and to the postsynaptic density on the other. The CNS synaptic junction may therefore be conceptualized as a complicated macromolecular scaffold that isostatically bridges two closely aligned plasma membranes.  相似文献   
954.
955.
Plasma adiponectin level is significantly reduced in patients with metabolic syndrome, and vascular dysfunction is an important pathological event in these patients. However, whether adiponectin may protect endothelial cells and attenuate endothelial dysfunction caused by metabolic disorders remains largely unknown. Adult rats were fed with a regular or a high-fat diet for 14 wk. The aorta was isolated, and vascular segments were incubated with vehicle or the globular domain of adiponectin (gAd; 2 mug/ml) for 4 h. The effect of gAd on endothelial function, nitric oxide (NO) and superoxide production, nitrotyrosine formation, gp91(phox) expression, and endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) activity/expression was determined. Severe endothelial dysfunction (maximal vasorelaxation in response to ACh: 70.3 +/- 3.3 vs. 95.2 +/- 2.5% in control, P < 0.01) was observed in hyperlipidemic aortic segments, and treatment with gAd significantly improved endothelial function (P < 0.01). Paradoxically, total NO production was significantly increased in hyperlipidemic vessels, and treatment with gAd slightly reduced, rather than increased, total NO production in these vessels. Treatment with gAd reduced (-78%, P < 0.01) superoxide production and peroxynitrite formation in hyperlipidemic vascular segments. Moreover, a moderate attenuation (-30%, P < 0.05) in gp91(phox) and iNOS overexpression in hyperlipidemic vessels was observed after gAd incubation. Treatment with gAd had no effect on eNOS expression but significantly increased eNOS phosphorylation (P < 0.01). Most noticeably, treatment with gAd significantly enhanced eNOS (+83%) but reduced iNOS (-70%, P < 0.01) activity in hyperlipidemic vessels. Collectively, these results demonstrated that adiponectin protects the endothelium against hyperlipidemic injury by multiple mechanisms, including promoting eNOS activity, inhibiting iNOS activity, preserving bioactive NO, and attenuating oxidative/nitrative stress.  相似文献   
956.
Genetic engineering of Lactococcus lactis to produce a heterologous protein may cause potential risks to the environment despite the industrial usefulness of engineered strains. To reduce the risks, we generated three auxotrophic recombinant L. lactis subsp. lactis IL1403 strains expressing a heterologous protein, BmpB, using thyA- and alr-targeting integration vectors: ITD (thyA alr + bmpB +), IAD (thyA + alr bmpB +), and ITDAD (thyA alr bmpB +). After construction of integration vectors, each vector was introduced into IL1403 genome. Integration of BmpB expression cassette, deletion of thyA, and inactivation of alr were verified by using PCR reaction. All heterologous DNA fragments except bmpB were eliminated from those recombinants during double crossover events. By using five selective agar plates, we also showed thymidine auxotrophy of ITD and ITDAD and d-alanine auxotrophy of IAD and ITDAD. In M17G and skim milk (SYG) media, the growth of the three recombinants was limited. In MRS media, the growth of IAD and ITDAD was limited, but ITD showed a normal growth pattern as compared with the wild-type strain (WT). All the recombinants showed maximal BmpB expression at an early stationary phase when they were cultivated in M17G supplemented with thymidine and d-alanine. These results suggest that auxotrophic recombinant L. lactis expressing a heterologous protein could be generated to reduce the ecological risks of a recombinant L. lactis.  相似文献   
957.
Brugada syndrome (BrS) is a life-threatening cardiac rhythm disorder characterized by persistent STsegment elevation in leads V1–V3 and right bundle branch block on electrocardiograms (ECG), and by syncope and sudden death from ventricular tachycardia (VT) and ventricular fibrillation (VF). BrS is responsible for nearly 4% of sudden cardiac deaths and considered to be the most common cause of natural death in males younger than 50 years in some Asian countries. Since the first diseasecausing gene for BrS (the cardiac sodium channel gene SCN5A) was identified in 1998, extensive investigations on both clinical and basic aspects of BrS have occurred rapidly. SCN5A mutations remain the most common cause of BrS; nearly 300 SCN5A mutations have been identified and are responsible for 20%–30% of BrS cases. Commercial genetic testing is available for SCN5A. Recently, seven other disease-causing genes for BrS have been identified and include GPD1L (BrS2), CACNA1C (Cav1.2, BrS3), CACNB2 (Cavβ2, BrS4), SCN1B (Navβ1, BrS5), KCNE3 (MiRP2, BrS6), SCN3B (Navβ3, BrS7), and HCN4 (BrS8). This article will briefly review the progress made over the past decade in our understanding of the clinical, genetic and molecular aspects of BrS.  相似文献   
958.
959.

Background  

Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration, increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa. Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli in root tip cells and selected physiological and biochemical characters.  相似文献   
960.
A phosphatase from thylakoid membrane of spinach (Spinacia oleracea L. ) chloroplasts was isolated with the methods of extraction with n-ButanoL centrifugation at 100000 g for 30 min and chromatographic separation through DEAE-Cellulose (DE 52) column.The phosphatase catalyzed hydrolysis of phosphate monoesters (4-nitrophenyl phosphate). The optimal pH for enzyme catalysis was below 7. The peak rate of the enzyme reaction was obtained when it was incubated at 60℃ for 15 min. The phosphatase was inhibited by ATP and phosphate. The results from SDS-PAGE showed that the preparation of enzyme was composed of two proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号