首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   75篇
  753篇
  2021年   19篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   30篇
  2014年   20篇
  2013年   26篇
  2012年   37篇
  2011年   42篇
  2010年   28篇
  2009年   29篇
  2008年   43篇
  2007年   34篇
  2006年   36篇
  2005年   31篇
  2004年   24篇
  2003年   33篇
  2002年   30篇
  2001年   11篇
  2000年   3篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   14篇
  1993年   7篇
  1992年   12篇
  1991年   13篇
  1990年   5篇
  1989年   8篇
  1988年   11篇
  1987年   11篇
  1986年   10篇
  1985年   8篇
  1984年   10篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1979年   6篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   8篇
  1974年   9篇
  1973年   7篇
  1972年   5篇
  1968年   3篇
排序方式: 共有753条查询结果,搜索用时 0 毫秒
21.
Palmitoylation is involved in several neuropsychiatric and movement disorders for which a dysfunctional signaling of the dopamine D3 receptor (Drd3) is hypothesized. Computational modeling of Drd3''s homologue, Drd2, has shed some light on the putative role of palmitoylation as a reversible switch for dopaminergic receptor signaling. Drd3 is presumed to be palmitoylated, based on sequence homology with Drd2, but the functional attributes afforded by Drd3 palmitoylation have not been studied. Since these receptors are major targets of antipsychotic and anti-Parkinsonian drugs, a better characterization of Drd3 signaling and posttranslational modifications, like palmitoylation, may improve the prospects for drug development. Using molecular dynamics simulations, we evaluated in silico how Drd3 palmitoylation could elicit significant remodeling of the C-terminal cytoplasmic domain to expose docking sites for signaling proteins. We tested this model in cellulo by using the interaction of Drd3 with the G-alpha interacting protein (GAIP) C terminus 1 (GIPC1) as a template. From a series of biochemical studies, live imaging, and analyses of mutant proteins, we propose that Drd3 palmitoylation acts as a molecular switch for Drd3-biased signaling via a GIPC1-dependent route, which is likely to affect the mode of action of antipsychotic drugs.  相似文献   
22.
Riven I  Iwanir S  Reuveny E 《Neuron》2006,51(5):561-573
G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.  相似文献   
23.
Eitan Wilf 《Ethnos》2015,80(1):1-22
In this article, I rely on Michel Foucault's notion of ‘technologies of the self’ to theorize the micro-practices by which individuals actively negotiate the reconfiguration of their sensory skills as a result of modernization processes. In doing so, I draw on ethnographic fieldwork I conducted in a collegiate jazz music program in the USA. By exploring a number of interactional games in which jazz students attempt to negotiate the challenge of cultivating aural skills in a pedagogical context that embraces visually mediated modes of knowledge production and transmission as a result of the professionalization and rationalization of jazz training, I inquire into the conditions of possibility for sensory agency under modernity.  相似文献   
24.
We previously shown a rapid increase in ATP turnover after addition of epidermal growth factor and insulin to quiescent 3T3 cell cultures. Here, the relationship between this increase in ATP turnover and the activation by growth factors of Na+/H+ and Na+/K+ exchange systems was studied. Our results show that alkalinization of the medium enhances ATP turnover but they do not support the assumption that stimulation by growth factors of the Na+/H+ exchange induces an increase in ATP turnover since this increase was not inhibited by amiloride. Conversely, when ATP synthesis was abolished, the increase, in intracellular pH, by growth factors, was significantly decreased.  相似文献   
25.
Cell penetration after recognition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by the ACE2 receptor and the fusion of its viral envelope membrane with cellular membranes are the early steps of infectivity. A region of the Spike protein of the virus, identified as the “fusion peptide” (FP), is liberated at its N-terminal site by a specific cleavage occurring in concert with the interaction of the receptor-binding domain of the Spike. Studies have shown that penetration is enhanced by the required binding of Ca2+ ions to the FPs of coronaviruses, but the mechanisms of membrane insertion and destabilization remain unclear. We have predicted the preferred positions of Ca2+ binding to the SARS-CoV-2-FP, the role of Ca2+ ions in mediating peptide-membrane interactions, the preferred mode of insertion of the Ca2+-bound SARS-CoV-2-FP, and consequent effects on the lipid bilayer from extensive atomistic molecular dynamics simulations and trajectory analyses. In a systematic sampling of the interactions of the Ca2+-bound peptide models with lipid membranes, SARS-CoV-2-FP penetrated the bilayer and disrupted its organization only in two modes involving different structural domains. In one, the hydrophobic residues F833/I834 from the middle region of the peptide are inserted. In the other, more prevalent mode, the penetration involves residues L822/F823 from the LLF motif, which is conserved in CoV-2-like viruses, and is achieved by the binding of Ca2+ ions to the D830/D839 and E819/D820 residue pairs. FP penetration is shown to modify the molecular organization in specific areas of the bilayer, and the extent of membrane binding of the SARS-CoV-2 FP is significantly reduced in the absence of Ca2+ ions. These findings provide novel mechanistic insights regarding the role of Ca2+ in mediating SARS-CoV-2 fusion and provide a detailed structural platform to aid the ongoing efforts in rational design of compounds to inhibit SARS-CoV-2 cell entry.  相似文献   
26.
COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER–ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.  相似文献   
27.
Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNβ) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNβ on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNβ treatment.  相似文献   
28.
β cell pseudoislets (PIs) are used for the in vitro study of β-cells in a three-dimensional (3-D) configuration. Current methods of PI induction require unique culture conditions and extensive mechanical manipulations. Here we report a novel co-culture system consisting of high passage β-cells and islet-derived endothelial cells (iECs) that results in a rapid and spontaneous formation of free-floating PIs. PI structures were formed as early as 72 h following co-culture setup and were preserved for more than 14 d. These PIs, composed solely of β-cells, were similar in size to that of native islets and showed an increased percentage of proinsulin-positive cells, increased insulin gene expression in response to glucose stimulation, and restored glucose-stimulated insulin secretion when compared to β-cells cultured as monolayers. Key extracellular matrix proteins that were absent in β-cells cultured alone were deposited by iECs on PIs and were found in and around the PIs. iEC-induced PIs are a readily available tool for examining β cell function in a native 3-D configuration and can be used for examining β-cell/iEC interactions in vitro.  相似文献   
29.
Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.  相似文献   
30.
Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth''s history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet''s surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号