首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   87篇
  2021年   17篇
  2017年   7篇
  2016年   10篇
  2015年   25篇
  2014年   17篇
  2013年   26篇
  2012年   37篇
  2011年   33篇
  2010年   26篇
  2009年   24篇
  2008年   34篇
  2007年   34篇
  2006年   39篇
  2005年   31篇
  2004年   33篇
  2003年   35篇
  2002年   35篇
  2001年   38篇
  2000年   23篇
  1999年   14篇
  1998年   11篇
  1997年   8篇
  1996年   14篇
  1995年   13篇
  1994年   17篇
  1993年   12篇
  1992年   12篇
  1991年   18篇
  1990年   13篇
  1989年   17篇
  1988年   13篇
  1987年   15篇
  1986年   16篇
  1985年   16篇
  1984年   9篇
  1983年   18篇
  1982年   9篇
  1979年   12篇
  1977年   13篇
  1976年   13篇
  1975年   8篇
  1974年   18篇
  1973年   10篇
  1972年   15篇
  1971年   8篇
  1970年   14篇
  1969年   7篇
  1968年   9篇
  1967年   13篇
  1966年   9篇
排序方式: 共有970条查询结果,搜索用时 15 毫秒
121.
Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.  相似文献   
122.
Despite advances in oncology drug development, most commonly used cancer therapeutics exhibit serious adverse effects. Often the toxicities of chemotherapeutics are due to the induction of significant DNA damage that is necessary for their ability to kill cancer cells. In some clinical situations, the direct induction of significant cytotoxicity is not a requirement to meet clinical goals. For example, differentiation, growth arrest, and/or senescence is a valuable outcome in some cases. In fact, in the case of acute myeloid leukemia (AML), the use of the differentiation agent all-trans-retinoic acid (ATRA) has revolutionized the therapy for a subset of leukemia patients and led to a dramatic survival improvement. Remarkably, this therapeutic approach is possible even in many elderly patients, who would not be able to tolerate therapy with traditional cytotoxic chemotherapy. Because of the success of ATRA, there is widespread interest in identifying differentiation strategies that may be effective for the 90-95% of AML patients who do not clinically respond to ATRA. Utilizing an AML differentiation agent that is in development, we found that AML differentiation can be induced through ATP depletion and the subsequent activation of DNA damage signaling through an ATR/Chk1-dependent and p53-independent pathway. This study not only reveals mechanisms of AML differentiation but also suggests that further investigation is warranted to investigate the potential clinical use of low dose chemotherapeutics to induce differentiation instead of cytotoxicity. This therapeutic approach may be of particular benefit to patients, such as elderly AML patients, who often cannot tolerate traditional AML chemotherapy.  相似文献   
123.
The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. Adapting current methods to deliver foreign compounds, such as amino acids and pesticides, to mosquitoes through sucrose solutions, we tested whether such an approach could be used in the yellow fever mosquito, Aedes aegypti. Using a non‐specific dsRNA construct, we found that adult Ae. aegypti ingested dsRNA through this method and that the ingested dsRNA can be recovered from the mosquitoes post‐feeding. Through the feeding of a species‐specific dsRNA construct against vacuolar ATPase, subunit A, we found that significant gene knockdown could be achieved at 12, 24 and 48 h post‐feeding.  相似文献   
124.

Background

Defensive medicine is the practice of diagnostic or therapeutic measures conducted primarily as a safeguard against possible malpractice liability. We studied the extent, reasons, and characteristics of defensive medicine in the Israeli health care system.

Methods and Findings

Cross-sectional study performed in the Israeli health care system between April and July 2008 in a sample (7%) of board certified physicians from eight medical disciplines (internal medicine, pediatrics, general surgery, family medicine, obstetrics and gynecology, orthopedic surgery, cardiology, and neurosurgery). A total of 889 physicians (7% of all Israeli board certified specialists) completed the survey. The majority [60%, (95%CI 0·57–0·63)] reported practicing defensive medicine; 40% (95%CI 0·37–0·43) consider every patient as a potential threat for a medical lawsuit; 25% (95%CI 0·22–0·28) have previously been sued at least once during their career. Independent predictors for practicing defensive medicine were surgical specialty [OR = 1.6 (95%CI 1·2–2·2), p = 0·0004], not performing a fellowship abroad [OR = 1·5 (95%CI 1·1–2), p = 0·027], and previous exposure to lawsuits [OR = 2·4 (95%CI 1·7–3·4), p<0·0001]. Independent predictors for the risk of being sued during a physician''s career were male gender [OR = 1·6 (95%CI 1·1–2·2), p = 0·012] and surgery specialty [OR = 3·2 (95%CI 2·4–4·3), p<0·0001] (general surgery, obstetrics and gynecology, orthopedic surgery, and neurosurgery).

Conclusions

Defensive medicine is very prevalent in daily physician practice in all medical disciplines. It exposes patients to complications due to unnecessary tests and procedures, affects quality of care and costs, and undermines doctor-patient relationships. Further studies are needed to understand how to minimize defensive medicine resulting from an increased malpractice liability market.  相似文献   
125.
Medicinal chemists’ “intuition” is critical for success in modern drug discovery. Early in the discovery process, chemists select a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is known about the cognitive aspects of chemists’ decision-making when they prioritize compounds. We investigate 1) how and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead compound from a set of ∼4,000 available fragments. Based on each chemist’s selections, computational classifiers were built to model each chemist’s selection strategy. Results suggest that chemists greatly simplified the problem, typically using only 1–2 of many possible parameters when making their selections. Although chemists tended to use the same parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding the low consensus between chemists.  相似文献   
126.
127.
128.
The increasing amount of chemogenomics data, that is, activity measurements of many compounds across a variety of biological targets, allows for better understanding of pharmacology in a broad biological context. Rather than assessing activity at individual biological targets, today understanding of compound interaction with complex biological systems and molecular pathways is often sought in phenotypic screens. This perspective poses novel challenges to structure-activity relationship (SAR) assessment. Today, the bottleneck of drug discovery lies in the understanding of SAR of rich datasets that go beyond single targets in the context of biological pathways, potential off-targets, and complex selectivity profiles. To aid in the understanding and interpretation of such complex SAR, we introduce Chemotography (chemotype chromatography), which encodes chemical space using a color spectrum by combining clustering and multidimensional scaling. Rich biological data in our approach were visualized using spatial dimensions traditionally reserved for chemical space. This allowed us to analyze SAR in the context of target hierarchies and phylogenetic trees, two-target activity scatter plots, and biological pathways. Chemotography, in combination with the Kyoto Encyclopedia of Genes and Genomes (KEGG), also allowed us to extract pathway-relevant SAR from the ChEMBL database. We identified chemotypes showing polypharmacology and selectivity-conferring scaffolds, even in cases where individual compounds have not been tested against all relevant targets. In addition, we analyzed SAR in ChEMBL across the entire Kinome, going beyond individual compounds. Our method combines the strengths of chemical space visualization for SAR analysis and graphical representation of complex biological data. Chemotography is a new paradigm for chemogenomic data visualization and its versatile applications presented here may allow for improved assessment of SAR in biological context, such as phenotypic assay hit lists.  相似文献   
129.
ATR kinase activation requires the recruitment of the ATR-ATRIP and RAD9-HUS1-RAD1 (9-1-1) checkpoint complexes to sites of DNA damage or replication stress. Replication protein A (RPA) bound to single-stranded DNA is at least part of the molecular recognition element that recruits these checkpoint complexes. We have found that the basic cleft of the RPA70 N-terminal oligonucleotide-oligosaccharide fold (OB-fold) domain is a key determinant of checkpoint activation. This protein-protein interaction surface is able to bind several checkpoint proteins, including ATRIP, RAD9, and MRE11. RAD9 binding to RPA is mediated by an acidic peptide within the C-terminal RAD9 tail that has sequence similarity to the primary RPA-binding surface in the checkpoint recruitment domain (CRD) of ATRIP. Mutation of the RAD9 CRD impairs its localization to sites of DNA damage or replication stress without perturbing its ability to form the 9-1-1 complex or bind the ATR activator TopBP1. Disruption of the RAD9-RPA interaction also impairs ATR signaling to CHK1 and causes hypersensitivity to both DNA damage and replication stress. Thus, the basic cleft of the RPA70 N-terminal OB-fold domain binds multiple checkpoint proteins, including RAD9, to promote ATR signaling.  相似文献   
130.
In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号