首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   29篇
  2023年   1篇
  2022年   1篇
  2021年   14篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   15篇
  2014年   8篇
  2013年   14篇
  2012年   17篇
  2011年   21篇
  2010年   15篇
  2009年   13篇
  2008年   20篇
  2007年   16篇
  2006年   23篇
  2005年   16篇
  2004年   11篇
  2003年   14篇
  2002年   21篇
  2001年   6篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   10篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   1篇
  1974年   5篇
  1973年   2篇
  1965年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
131.
Escherichia coli membrane protein biogenesis is mediated by a signal recognition particle and its membrane-associated receptor (FtsY). Although crucial for its function, it is still not clear how FtsY interacts with the membrane. Analysis of the structure/function differences between severely truncated active (NG+1) and inactive (NG) mutants of FtsY enabled us to identify an essential membrane-interacting determinant. Comparison of the three-dimensional structures of the mutants, combined with site-directed mutagenesis, modeling, and liposome-binding assays, revealed that FtsY contains a conserved autonomous lipid-binding amphipathic alpha-helix at the N-terminal end of the N domain. Deletion experiments showed that this helix is essential for FtsY function in vivo, thus offering, for the first time, clear evidence for the functionally important, physiologically relevant interaction of FtsY with lipids.  相似文献   
132.
The genes cry1Ac and cry1Ca from Bacillus thuringiensis subsps. kurstaki HD-73 and aizawai 4J4, respectively, encoding δ-endotoxins against lepidopteran larvae were isolated, cloned and expressed in Escherichia coli, with and without cyt1Aa (encoding cytolytic protein) and p20 (accessory protein) from subsp. israelensis. Nine combinations of the genes under control of an early T7, P A1 inducible promoter, produced the encoding proteins. Toxicities were examined against larvae of three major agricultural pests: Pectinophora gossypiella, Helicoverpa armigera and Spodoptera littoralis. The clones expressing cyt1Aa, with or without p20, were not toxic. The clone expressing cry1Ac (pBt-1A) was the most toxic to P. gossypiella (LC50 of 0.27 × 108 cells g−1). Clone pBt-1CA expressing cry1Ca and cry1Ac displayed the highest toxicity (LC50 of 0.12 × 108 cells ml−1) against S. littoralis. Clone pBt-1CARCy expressing all four genes (cry1Ca, cry1Ac, p20, cyt1Aa) in tandem exhibited the highest toxicity to H. armigera (LC50 of 0.16 × 108 cells ml−1). Cyt1Aa failed to raise the toxicity of these Cry toxins against P. gossypiella and S. littoralis but significantly enhanced toxicity against H. armigera. Two additional clones expressing either cry1Ac or cry1Ca under tandem promoters, P A1 and P psbA (constitutive), displayed significantly higher toxicities (7.5- to 140-fold) than their counterparts with P A1 alone, reducing the LC50 values to below 107 cells ml−1. Vadim Khasdan and Maria Sapojnik are contributed equally to this work.  相似文献   
133.
PIP2--the master key   总被引:1,自引:0,他引:1  
Guy-David L  Reuveny E 《Neuron》2007,55(4):537-538
The function of inwardly rectifying K+ (Kir) channels is highly diverse and therefore is tightly regulated by various environmental factors. In their article in this issue of Neuron, Rapedius et al. recognize a conserved structural mechanism for Kir channels gating by both pH and PIP2. In light of these findings and accumulated knowledge, PIP2 is suggested to have a common coregulatory role in the gating of Kir channels by all their soluble modulators.  相似文献   
134.
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.  相似文献   
135.
TRAM,LAG1 and CLN8: members of a novel family of lipid-sensing domains?   总被引:7,自引:0,他引:7  
A family of membrane-associated proteins related to yeast Lag1p and mammalian TRAM has been identified. The family includes the protein product of CLN8, a gene mutated in progressive epilepsy with mental retardation. Mouse CLN8 is also mutated in the mnd/mnd mouse, a model for neuronal ceroid lipofuscinoses. The identification of these homologues has potential implications for our understanding of ceramide synthesis, lipid regulation and protein translocation in the endoplasmic reticulum.  相似文献   
136.
Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.  相似文献   
137.
Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the relationship between oxidative stress experienced by RBCs and their phospholipid content and shedding. Using 1H-NMR, we demonstrated a higher lactate/pyruvate ratio, an indicator of oxidative stress, in normal RBCs treated with oxidants (t-butylhydroxyperoxide and H2O2) as well as in β-thalassemic RBCs. Using 31P-NMR, we found 30% more phosphatidylcholine (PC), and unexpectedly, 35% less phosphatidylserine (PS) in the thalassemic RBCs. PS was decreased by treatment with oxidants and increased by anti-oxidants (vitamin C and N-acetyl cysteine); PC showed the opposite behavior. Thalassemic RBCs incubated in phosphate buffered saline produced more PS in the supernatant than normal RBCs. Anti-oxidants reduced the PS in the supernatant while oxidants increased it. Plasma of thalassemic patients contained 2.6-fold and 1.8-fold more PS and PC, respectively, than normal plasma. These results indicate that the decreased PS in RBCs resulted from increased shedding. The nature of the shed PS was studied by purifying and analyzing membranous microparticles from the plasma and RBC supernatants. More PS was found in microparticles purified from thalassemic plasma and RBC supernatants (5.6- and 4.8-fold, respectively) than in their normal counterparts. However, the bulk (80-90%) of the shed PS was not associated with microparticles. The significance of PS shedding for RBC survival needs further clarification.  相似文献   
138.
Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate “nucleation complex” can predict relative propensity for the process with other HDs.  相似文献   
139.
RAGE ligation affects T cell activation and controls T cell differentiation   总被引:1,自引:0,他引:1  
The pattern recognition receptor, RAGE, has been shown to be involved in adaptive immune responses but its role on the components of these responses is not well understood. We have studied the effects of a small molecule inhibitor of RAGE and the deletion of the receptor (RAGE-/- mice) on T cell responses involved in autoimmunity and allograft rejection. Syngeneic islet graft and islet allograft rejection was reduced in NOD and B6 mice treated with TTP488, a small molecule RAGE inhibitor (p < 0.001). RAGE-/- mice with streptozotocin-induced diabetes showed delayed rejection of islet allografts compared with wild type (WT) mice (p < 0.02). This response in vivo correlated with reduced proliferative responses of RAGE-/- T cells in MLRs and in WT T cells cultured with TTP488. Overall T cell proliferation following activation with anti-CD3 and anti-CD28 mAbs were similar in RAGE-/- and WT cells, but RAGE-/- T cells did not respond to costimulation with anti-CD28 mAb. Furthermore, culture supernatants from cultures with anti-CD3 and anti-CD28 mAbs showed higher levels of IL-10, IL-5, and TNF-alpha with RAGE-/- compared with WT T cells, and WT T cells showed reduced production of IFN-gamma in the presence of TTP488, suggesting that RAGE may be important in the differentiation of T cell subjects. Indeed, by real-time PCR, we found higher levels of RAGE mRNA expression on clonal T cells activated under Th1 differentiating conditions. We conclude that activation of RAGE on T cells is involved in early events that lead to differentiation of Th1(+) T cells.  相似文献   
140.
Channels and cavities play important roles in macromolecular functions, serving as access/exit routes for substrates/products, cofactor and drug binding, catalytic sites, and ligand/protein. In addition, channels formed by transmembrane (TM) proteins serve as transporters and ion channels. MolAxis is a new sensitive and fast tool for the identification and classification of channels and cavities of various sizes and shapes in macromolecules. MolAxis constructs corridors, which are pathways that represent probable routes taken by small molecules passing through channels. The outer medial axis of the molecule is the collection of points that have more than one closest atom. It is composed of two-dimensional surface patches and can be seen as a skeleton of the complement of the molecule. We have implemented in MolAxis a novel algorithm that uses state-of-the-art computational geometry techniques to approximate and scan a useful subset of the outer medial axis, thereby reducing the dimension of the problem and consequently rendering the algorithm extremely efficient. MolAxis is designed to identify channels that connect buried cavities to the outside of macromolecules and to identify TM channels in proteins. We apply MolAxis to enzyme cavities and TM proteins. We further utilize MolAxis to monitor channel dimensions along Molecular Dynamics trajectories of a human Cytochrome P450. MolAxis constructs high quality corridors for snapshots at picosecond time-scale intervals substantiating the gating mechanism in the 2e substrate access channel. We compare our results with previous tools in terms of accuracy, performance and underlying theoretical guarantees of finding the desired pathways. MolAxis is available on line as a web-server and as a stand alone easy-to-use program (http://bioinfo3d.cs.tau.ac.il/MolAxis/).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号