首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2209篇
  免费   134篇
  国内免费   1篇
  2344篇
  2024年   16篇
  2023年   27篇
  2022年   83篇
  2021年   117篇
  2020年   77篇
  2019年   89篇
  2018年   111篇
  2017年   92篇
  2016年   142篇
  2015年   159篇
  2014年   153篇
  2013年   186篇
  2012年   152篇
  2011年   137篇
  2010年   116篇
  2009年   71篇
  2008年   69篇
  2007年   73篇
  2006年   60篇
  2005年   58篇
  2004年   46篇
  2003年   32篇
  2002年   36篇
  2001年   22篇
  2000年   18篇
  1999年   21篇
  1997年   10篇
  1996年   6篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1989年   5篇
  1988年   10篇
  1987年   9篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1971年   5篇
  1857年   4篇
排序方式: 共有2344条查询结果,搜索用时 0 毫秒
41.
Shentu Z  Al Hasan M  Bystroff C  Zaki MJ 《Proteins》2008,70(3):1056-1073
We describe an efficient method for partial complementary shape matching for use in rigid protein-protein docking. The local shape features of a protein are represented using boolean data structures called Context Shapes. The relative orientations of the receptor and ligand surfaces are searched using precalculated lookup tables. Energetic quantities are derived from shape complementarity and buried surface area computations, using efficient boolean operations. Preliminary results indicate that our context shapes approach outperforms state-of-the-art geometric shape-based rigid-docking algorithms.  相似文献   
42.
Organophosphates and carbamates are major agrochemicals that strongly affect different neuroenzymes and the growth of various fish species. Here, we study the effect of sublethal concentrations of profenofos and carbofuran on the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and the associated health risk in fish. Labeo rohita fingerlings were exposed to three sublethal concentrations of profenofos and carbofuran. The minimum cholinesterase activities in the brain, gills, muscle, kidney, liver, and blood were after exposure to profenofos (0.06 mg/L). The minimum AChE and BuChE activities in the brain, gills, muscle, kidney, liver, and blood were after exposure to carbofuran (0.28 and 0.198 mg/L). Exposure to both types of pesticides affected the functions of these organs, including metabolism and neurotransmission, to various extents at different exposure concentrations. These findings suggest that they are required to be properly monitored in the environment, to reduce their toxic effects on nontarget organisms  相似文献   
43.
The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.  相似文献   
44.
Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.  相似文献   
45.
Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free proline in the target species also suggests that the plant was in a stressed condition due to litter allelopathy. These findings are important for better understanding the invasive potential of boneseed and in devising control strategies.  相似文献   
46.
The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.  相似文献   
47.
The blood–brain barrier (BBB), consisting of specialized endothelial cells surrounded by astrocytes and pericytes, plays a crucial role in brain homeostasis. Many cerebrovascular diseases are associated with BBB breakdown and oxygen (O2) deprivation constitutes a critical factor that onsets its disruption. We investigated the impact of astrocytes and pericytes on brain endothelial cell permeability and survival during different degrees of O2 deprivation. Prolonged exposure to 1% O2 caused barrier breakdown and exposure to 0.1% O2 dramatically accelerated disruption and induced cell death, mediated at least in part via caspase‐3 activation. Reoxygenation allowed only cells exposed to 1% O2 to re‐establish barrier function. Notably co‐culture with astrocytes and pericytes substantially enhanced barrier function under normoxic conditions, and produced differential responses during O2 deprivation. At 1% O2 astrocytes partially maintained barrier integrity whereas pericytes accelerated its disruption in the short‐term, having positive effects only after prolonged exposure. Unexpectedly, at 0.1% O2 pericytes were more effective than astrocytes in preserving barrier function although the protection afforded by both cells involved inhibition of caspase‐3 pathways. Furthermore, cell‐specific regulation of auto‐ and paracrine VEGF signaling pathways were also in part responsible for the differential modulation of barrier function. Our data suggests that cellular cross‐talk within the neurovascular unit is crucial for preservation of barrier integrity and that pericytes, not astrocytes, play a significant role during severe and prolonged O2 deprivation. J. Cell. Physiol. 218: 612–622, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
48.
49.
    
Bone marrow–derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP+) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP+linSca-1+ cells into non-haematopoietic tissues. The transplantation of BM cells or GFP+linSca-1+ cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP+ cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP+linSca-1+ cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.  相似文献   
50.
    
Helical parameters displayed on a Ramachandran plot allow peptide structures with successive residues having identical main chain conformations to be studied. We investigate repeating dipeptide main chain conformations and present Ramachandran plots encompassing the range of possible structures. Repeating dipeptides fall into the categories: rings, ribbons, and helices. Partial rings occur in the form of “nests” and “catgrips”; many nests are bridged by an oxygen atom hydrogen bonding to the main chain NH groups of alternate residues, an interaction optimized by the ring structure of the nest. A novel recurring feature is identified that we name unpleated β, often situated at the ends of a β‐sheet strand. Some are partial rings causing the polypeptide to curve gently away from the sheet; some are straight. They lack β‐pleat and almost all incorporate a glycine. An example is the first glycine in the GxxxxGK motif of P‐loop proteins. Ribbons in repeating dipeptides can be either flat, as seen in repeated type II and type II′ β‐turns, or twisted, as in multiple type I and type I′ β‐turns. Hexa‐ and octa‐peptides in such twisted ribbons occur frequently in proteins, predominantly with type I β‐turns, and are the same as the “β‐bend ribbons” hitherto identified only in short peptides. One is seen in the GTPase‐activating protein for Rho in the active, but not the inactive, form of the enzyme. It forms a β‐bend ribbon, which incorporates the catalytic arginine, allowing its side chain guanidino group to approach the active site and enhance enzyme activity. Proteins 2014; 82:230–239. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号