首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1578篇
  免费   104篇
  2023年   8篇
  2021年   17篇
  2020年   7篇
  2019年   16篇
  2018年   15篇
  2017年   13篇
  2016年   27篇
  2015年   43篇
  2014年   57篇
  2013年   87篇
  2012年   74篇
  2011年   77篇
  2010年   57篇
  2009年   44篇
  2008年   85篇
  2007年   82篇
  2006年   86篇
  2005年   76篇
  2004年   61篇
  2003年   80篇
  2002年   58篇
  2001年   55篇
  2000年   55篇
  1999年   50篇
  1998年   16篇
  1997年   19篇
  1996年   15篇
  1995年   14篇
  1994年   10篇
  1993年   15篇
  1992年   38篇
  1991年   46篇
  1990年   26篇
  1989年   28篇
  1988年   22篇
  1987年   22篇
  1986年   26篇
  1985年   19篇
  1984年   18篇
  1983年   19篇
  1982年   10篇
  1981年   9篇
  1979年   5篇
  1977年   12篇
  1976年   5篇
  1975年   10篇
  1974年   9篇
  1973年   5篇
  1968年   5篇
  1966年   4篇
排序方式: 共有1682条查询结果,搜索用时 15 毫秒
151.
Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G2 arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G2 arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G2 arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.DNA damage occurs frequently in all organisms as a consequence of both endogenous metabolic processes and exogenous DNA-damaging agents. In nature, the steady-state level of DNA damage is usually very low. However, chronic low-level DNA damage can lead to age-related genome instability as a consequence of the accumulation of DNA damage (12, 27). Increasing evidence implicates DNA damage-related replication stress in genome instability (7, 21). Replication stress occurs when an active fork encounters DNA lesions or proteins tightly bound to DNA. These obstacles pose a threat to the integrity of the replication fork and are thus a potential source of genome instability, which can contribute to tumorigenesis and aging in humans (4, 11). Confronted with this risk, cells have developed fundamental DNA damage response mechanisms in order to faithfully complete DNA replication (8).In budding yeast Saccharomyces cerevisiae, the Rad6-dependent postreplication repair (PRR) pathway is subdivided into three subpathways, which allow replication to resume by bypassing the lesion without repairing the damage (3, 22, 33). Translesion synthesis (TLS) pathways dependent on the DNA polymerases eta and zeta promote error-free or mutagenic bypass depending on the DNA lesion and are activated upon monoubiquitination of proliferating cell nuclear antigen (PCNA) at Lys164 (K164) (5, 16, 37). The Rad5 (E3) and Ubc13 (E2)/Mms2 (E2 variant)-dependent pathway promotes error-free bypass by template switching and is activated by polyubiquitination of PCNA via a Lys63-linked ubiquitin chain (16, 38, 41). It remains mechanistically unclear how polyubiquitinated PCNA promotes template switching at the molecular level. In addition to its ubiquitin E3 activity, Rad5 also has a helicase domain and was recently shown to unwind and reanneal fork structures in vitro (6). This led to the proposal that Rad5 helicase activity is required at replication forks to promote fork regression and subsequent template switching. It is possible that PCNA polyubiquitination acts to facilitate Rad5-dependent template switching by inhibiting monoubiquitination-dependent TLS activity and/or by recruiting alternative proteins to the fork.In addition to modification by ubiquitin, PCNA can also be sumoylated on Lys164 by the SUMO E3 ligase Siz1 (16). A second sumoylation site, Lys127, is also targeted by an alternative SUMO E3 ligase, Siz2, albeit with lower efficiency (16, 30). PCNA SUMO modification results in recruitment of the Srs2 helicase and subsequent inhibition of Rad51-dependent recombination events (29, 32). The modification can therefore allow the replicative bypass of lesions by promoting the RAD6 pathway. Srs2 is known to act as an antirecombinase by eliminating recombination intermediates. This can occur independently of PCNA sumoylation, and when srs2Δ cells are UV irradiated or other antirecombinases, such as Sgs1, are concomitantly deleted, toxic recombination structures accumulate (1, 10). Such genetic data are consistent with the ability of Srs2 to disassemble the Rad51 nucleoprotein filaments formed on single-stranded DNA (ssDNA) in vitro (20, 40). In addition to directly inhibiting homologous recombination (HR), Srs2 is also involved in regulating HR outcomes to not produce crossover recombinants in the mitotic cell cycle (18, 34, 35).The UV spectrum present in sunlight is a primary environmental cause of exogenous DNA damage. Sunlight is a potent and ubiquitous carcinogen responsible for much of the skin cancer in humans (17). In the natural environment, organisms are exposed to chronic low-dose UV light (CLUV), as opposed to the acute high doses commonly used in laboratory experiments. Hence, understanding the cellular response to CLUV exposure is an important approach complementary to the more traditional laboratory approaches for clarifying the biological significance of specific DNA damage response pathways. A recently developed experimental assay for the analysis of CLUV-induced DNA damage responses was used to show that the PCNA polyubiquitination-dependent error-free PRR pathway plays a critical role in tolerance of CLUV exposure by preventing the generation of excessive ssDNA when replication forks arrest, thus suppressing counterproductive checkpoint activation (13).Mutants of SRS2 were first isolated by their ability to suppress the radiation sensitivity of rad6 and rad18 mutants (defective in PRR) by a mechanism that requires a functional HR pathway (23, 36). In this study, we analyzed the function of Srs2 in CLUV-exposed PRR-deficient cells. We established that Srs2 acts in conjunction with SUMO-modified PCNA to lower the threshold for checkpoint activation and maintenance by suppressing the function of HR in rad18Δ cells exposed to CLUV. We also showed that Srs2 is separately involved in an HR-dependent recovery process following cessation of CLUV exposure and that this second role for Srs2, unlike its primary role in checkpoint activation and maintenance, is regulated by CDK1-dependent phosphorylation. Thus, Srs2 is involved in both CLUV-induced checkpoint-mediated arrest and recovery from CLUV exposure in PRR-deficient cells, and these two functions, while both involving HR, are separable and thus independent.  相似文献   
152.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   
153.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   
154.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   
155.
The effects of intracellular Cl- concentration ([Cl-]i) on acetylcholine (ACh)-stimulated exocytosis were studied in guinea pig antral mucous cells by video microscopy. ACh activated Ca2+-regulated exocytosis (an initial phase followed by a sustained phase). Bumetanide (20 microM) or a Cl- -free (NO3-) solution enhanced it; in contrast, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, a Cl- channel blocker) decreased it and eliminated the enhancement induced by bumetanide or NO3- solution. ACh and Ca2+ dose-response studies demonstrated that NO3- solution does not shift their dose-response curves, and ATP depletion studies by dinitrophenol or anoxia demonstrated that exposure of NO3- solution prior to ATP depletion induced an enhanced initial phase followed by a sustained phase, whereas exposure of NO3- solution after ATP depletion induced only a sustained phase. Intracellular Ca2+ concentration ([Ca2+]i) measurements showed that bumetanide and NO3- solution enhanced the ACh-stimulated [Ca2+]i increase. Measurements of [Cl-]i revealed that ACh decreases [Cl-]i and that bumetanide and NO3- solution decreased [Cl-]i and enhanced the ACh-evoked [Cl-]i decrease; in contrast, NPPB increased [Cl-]i and inhibited the [Cl-]i decrease induced by ACh, bumetanide, or NO3- solution. These suggest that [Cl-]i modulates [Ca2+]i increase and ATP-dependent priming. In conclusion, a decrease in [Cl-]i accelerates ATP-dependent priming and [Ca2+]i increase, which enhance Ca2+-regulated exocytosis in ACh-stimulated antral mucous cells.  相似文献   
156.
The Sendai virus (SeV) C protein blocks signal transduction of interferon (IFN), thereby counteracting the antiviral actions of IFN. Using HeLa cell lines expressing truncated or mutated SeV C proteins, we found that the C-terminal half has anti-IFN capacity, and that K(151)A, E(153)A, and R(154)A substitutions in the C protein eliminated this capacity. Here, we further created the mutant virus SeV Cm*, in which K(151)A, E(153)K, and R(157)L substitutions in the C protein were introduced without changing the amino acid sequence of overlapped P, V, and W proteins. SeV Cm* was found to lack anti-IFN capacity, as expected. While the growth rate and final yield of SeV Cm* were inferior to those of the wild-type SeV in IFN-responsive, STAT1-positive 2fTGH cells, SeV Cm* grew equivalently to the wild-type SeV in IFN-nonresponsive, STAT1-deficient U3A cells. SeV Cm* was thus shown to maintain multiplication capacity, except that it lacked anti-IFN capacity. Intranasally inoculated SeV Cm* could propagate in the lungs of STAT1(-/-) mice but was cleared from those of STAT1(+/+) mice without propagation. It was found that the anti-IFN capacity of the SeV C protein was indispensable for pathogenicity in mice. Conversely, the results show that the innate immunity contributed to elimination of SeV in early stages of infection in the absence of anti-IFN capacity.  相似文献   
157.
The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (P N), mesophyll conductance (g m), and stomatal conductance (g s) decreased. P N was more dominantly restricted by g m than g s. The values of P N, g m, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high P N and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input.  相似文献   
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号