首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   34篇
  2022年   2篇
  2021年   10篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   12篇
  2014年   16篇
  2013年   12篇
  2012年   19篇
  2011年   17篇
  2010年   15篇
  2009年   14篇
  2008年   21篇
  2007年   15篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   12篇
  2002年   15篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1971年   1篇
  1968年   2篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
231.
We investigated the influence of transmembrane protein (TM) domains on incorporation of retroviral envelopes into virions and on infectivity. We introduced complete, truncated, or chimeric Friend murine leukemia virus (F-MuLV) and human T-cell leukemia virus type 1 (HTLV-1) envelopes into an MuLV particle-producing complementation cell line. As shown previously for HTLV-1 envelopes containing extracellular domains of F-MuLV TM (C. Denesvre, P. Sonigo, A. Corbin, H. Ellerbrok, and M. Sitbon, J. Virol. 69:4149-4157, 1995), reverse chimeric F-MuLV envelopes containing the extracellular domain of HTLV-1 TM were not processed. In contrast, a chimeric MuLV envelope containing the entire HTLV membrane-spanning and cytoplasmic domains (FHTMi) was efficiently processed, fusogenic as tested in a cell-to-cell assay, and efficiently incorporated into MuLV particles. However, these MuLV particles bearing FHTMi envelope proteins could not infect mouse or rat cells which are susceptible to wild-type F-MuLV. Therefore, envelopes which are readily fusogenic in cell-to-cell assays and also efficiently incorporated into virions may not necessarily confer virus-to-cell fusogenicity. HTLV envelopes, whether parental, chimeric (containing the MuLV cytoplasmic tail) or with a truncated cytoplasmic domain, were incorporated into MuLV particles with equal efficiencies, indicating that the cytoplasmic tails of these envelopes did not determine their incorporation into virions. In contrast to FHTMi envelope, HTLV-1 envelopes with F-MuLV membrane-spanning and cytoplasmic domains, as well as wild-type HTLV-1 envelopes, conferred virion infectivity. These results help to define requirements for envelope incorporation into retroviral particles and their cell-free infectivity.  相似文献   
232.
Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2‐C‐methyl‐d ‐erythritol‐4‐phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map‐based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.  相似文献   
233.
Intraguild predation (IGP) occurs when consumers competing for a resource also engage in predatory interactions. A common type of IGP involves aphid predators and parasitoids: since parasitoid offspring develop within aphid hosts, they are particularly vulnerable to predation by aphid predators such as coccinellid beetles. Other intraguild interactions that include non-lethal behavioral effects, such as interference with foraging and avoidance of IGP, may also hamper parasitoid activity and reduce their effectiveness as biological control agents. In this study, we quantified mortality in and behavioral effects on Aphidius colemani Viereck (Hymenoptera: Aphidiidae) by its IG-predator Coccinella undecimpunctata L. (Coleoptera: Coccinellidae), and compared the impact of two release ratios of these natural enemies on aphid populations. Parasitoids did not leave the plant onto which they were first introduced, regardless of the presence of predators, even when alternative prey was offered on predator-free plants nearby. In 2-hour experiments, predator larvae interfered with wasp activity, and the level of aphid parasitism was lower in the presence of predators than in their absence. In these experiments, the parasitoids contributed more to aphid mortality than the predators and aphid suppression was higher when a parasitoid acted alone than in combination with a predator larva. These results were confirmed in a 5-day experiment, but only at one parasitoid:predator release ratio (4:3) not another (2:3). The over-all impact on aphid population growth was non-the-less stronger when both enemies acted together than when only one of them was present. Results indicate that for given release ratios and time scale, the negative lethal and non-lethal effects of the predator on parasitoid performance did not fully cancelled the direct impact of the predator on the aphid population.  相似文献   
234.
235.
Plant organelles are highly motile, with speed values of 3–7 m m/s in cells of land plants and about20–60 m m/s in characean algal cells. This movement is believed to be important for rapid distribution of materials around the cell, for the plant's ability to respond to environmental biotic and abiotic signals and for proper growth. The main machinery that propels motility of organelles within plant cells is based on the actin cytoskeleton and its motor proteins the myosins.Most plants express multiple members of two main classes:myosin VIII and myosin XI. While myosin VIII has been characterized as a slow motor protein, myosins from class XI were found to be the fastest motor proteins known in al kingdoms. Paradoxically, while it was found that myosins from class XI regulate most organelle movement, it is not quite clear how or even if these motor proteins attach to the organelles whose movement they regulate.  相似文献   
236.
Environmental stresses are among the major factors that limit crop productivity and plant growth. Various nondestructive approaches for monitoring plant stress states have been developed. However, early sensing of the initial biochemical events during stress responses remains a significant challenge. In this work, we established whole-plant redox imaging using potato (Solanum tuberosum) plants expressing a chloroplast-targeted redox-sensitive green fluorescence protein 2 (roGFP2), which reports the glutathione redox potential (EGSH). Ratiometric imaging analysis demonstrated the probe response to redox perturbations induced by H2O2, DTT, or a GSH biosynthesis inhibitor. We mapped alterations in the chloroplast EGSH under several stress conditions including, high-light (HL), cold, and drought. An extremely high increase in chloroplast EGSH was observed under the combination of HL and low temperatures, conditions that specifically induce PSI photoinhibition. Intriguingly, we noted a higher reduced state in newly developed compared with mature leaves under steady-state and stress conditions, suggesting a graded stress sensitivity as part of the plant strategies for coping with stress. The presented observations suggest that whole-plant redox imaging can serve as a powerful tool for the basic understanding of plant stress responses and applied agricultural research, such as toward improving phenotyping capabilities in breeding programs and early detection of stress responses in the field.

Whole-plant imaging of potato plants expressing a genetically encoded biosensor allows for spatially resolved and nondestructive mapping of stress-induced redox perturbations.  相似文献   
237.
238.
G. Sitbon 《Insectes Sociaux》1971,18(3):161-172
Résumé La raison pour laquelle les abeilles isolées meurent plus vite que les abeilles groupées n'est ni d'ordre alimentaire ni d'ordre métabolique. De même, les Corpora allata n'ont aucune influence sur la survie des abeilles d'hiver.Par contre, la Pars intercerebralis d'abeilles groupées par 30 contient plus de cellules neurosécrétrices que celle d'abeilles isolées dans les mêmes conditions expérimentales, après 8 jours d'expérience.Cette différence statistiquement significative semble être un des facteurs responsables de cette différence de mortalité.Le déterminisme de cet effet de groupe paraît done être en relation avec la quantité de neurosécrétion présente dans le cerveau des insectes considérés.
Zusammenfassung Wie bereits gezeigt haben die Ernährungsweise und der Metabolismus keinen Einfluss im Sterblichkeitsunterschied zwischen isolierten=und gruppierten Bienen.Nach diesem Experiment bei Winterbienen, kann ich dasgleiche von den Corpora allata behaupten.Dagegen weist, nach 8 tägigen Versuch, diePars intercerebralis der gruppierten Bienen mehr Neurosekretion auf, als die der Isolierten unter den gleichen experimentalen Bedingungen.So scheint diese statistisch bedeutende Differenz die Ursache der grösseren Sterblichkeit der isolierten Bienen zu sein.
  相似文献   
239.
240.
Transgenic plants overproducing indole-3-acetic acid (IAA) from expression of the Agrobacterium tumefaciens T-DNA IAA biosynthesis genes were used to study the conjugation of IAA. At the 11-node stage, free IAA, as well as ester- and amide-conjugated IAA, was analyzed in wild-type tobacco SR1 and in transgenic plants denoted 35S-iaaM/iaaH (line C) and 35S-iaaM x 35S-iaaH (line X). The transgenic plants contained increased levels of both free and conjugated IAA, and the main increase in IAA conjugates occurred in amide conjugates. Two amide conjugates were identified by fritfast atom bombardment liquid chromatography-mass spectrometry as indole-3-acetylaspartic acid (IAAsp) and indole-3-acetylglutamic acid (IAGlu), and one ester conjugate was identified as indole-3-acetylglucose. IAAsp and IAGlu were also identified as endogenous substances in wild-type plants. In wild-type plants, the percent of total IAA in the free form was significantly higher in young leaves (73 [plus or minus] 7%, SD) than in old leaves (36 [plus or minus] 8%), whereas there was no difference between young (73 [plus or minus] 8%) and old internodes (70 [plus or minus] 9%). In IAA-overproducing transformants, both free and conjugated IAA levels were increased, but the percent free IAA was maintained constant (57 [plus or minus] 10%) for both leaves and internodes, independent of the total IAA level or tissue age. These results suggest that synthesis or transport of IAA conjugates is regulated in the vegetative wild-type plant, and that different organs possess a unique balance between free and conjugated IAA. The IAA-overproducing plant, however, acquires a lower proportion of free IAA in the stem and younger leaves, presumably determined by a higher conjugation in those tissues compared with wild type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号