首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   34篇
  2022年   2篇
  2021年   10篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   12篇
  2014年   16篇
  2013年   12篇
  2012年   19篇
  2011年   17篇
  2010年   15篇
  2009年   14篇
  2008年   21篇
  2007年   15篇
  2006年   12篇
  2005年   11篇
  2004年   14篇
  2003年   12篇
  2002年   15篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
  1971年   1篇
  1968年   2篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
101.
A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (“cotton fiber”). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with ~22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral developmental program.  相似文献   
102.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   
103.
104.
105.
106.
107.
108.
Abstract: Tau is a microtubule-associated protein whose promoter is activated during the first phase of nerve growth factor-induced PC12 cell differentiation, whereas levels of its mRNA are accumulating throughout differentiation. In this study, we have followed the signal transduction cascades regulating tau induction. Using dominant negative Ras-expressing PC12 cells, we show that ras regulates tau expression during the first phase of PC12 cell differentiation. The ERK and JNK cascades, which are downstream of Ras; have opposing effects on tau promoter activity: ERK induces tau promoter activity, JNK inhibits it. Tau promoter activity in PC12 cells is correlated with a short-term activation of ERK, which declines after a few hours and is followed by an activation of the inhibitory JNK cascade 76 h later. These observations suggest that the induction and inhibition of tau promoter are mediated by alternate ERK and JNK activities, which may underlie a mechanism to turn on and off genes during PC12 cell differentiation.  相似文献   
109.
110.
Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号