首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   40篇
  2022年   2篇
  2021年   13篇
  2020年   5篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   19篇
  2014年   23篇
  2013年   17篇
  2012年   26篇
  2011年   23篇
  2010年   17篇
  2009年   16篇
  2008年   20篇
  2007年   20篇
  2006年   17篇
  2005年   10篇
  2004年   14篇
  2003年   14篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有331条查询结果,搜索用时 93 毫秒
241.
242.
The microalga Emiliania huxleyi produces alkenone lipids that are important proxies for estimating past sea surface temperatures. Field calibrations of this proxy are robust but highly variable results are obtained in culture. Here, we present results suggesting that algal‐bacterial interactions may be responsible for some of this variability. Co‐cultures of E. huxleyi and the bacterium Phaeobacter inhibens resulted in a 2.5‐fold decrease in algal alkenone‐containing lipid bodies. In addition levels of unsaturated alkenones increase in co‐cultures. These changes result in an increase in the reconstructed growth temperature of up to 2°C relative to axenic algal cultures.  相似文献   
243.
Identification of Regulators for Ypt1 GTPase Nucleotide Cycling   总被引:5,自引:3,他引:2       下载免费PDF全文
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.  相似文献   
244.
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic growth factor that promotes compensatory angiogenesis in circumstances of oxygen shortage. The requirement for translational regulation of VEGF is imposed by the cumbersome structure of the 5′ untranslated region (5′UTR), which is incompatible with efficient translation by ribosomal scanning, and by the physiologic requirement for maximal VEGF production under conditions of hypoxia, where overall protein synthesis is compromised. Using bicistronic reporter gene constructs, we show that the 1,014-bp 5′UTR of VEGF contains a functional internal ribosome entry site (IRES). Efficient cap-independent translation is maintained under hypoxia, thereby securing efficient production of VEGF even under unfavorable stress conditions. To identify sequences within the 5′UTR required for maximal IRES activity, deletion mutants were analyzed. Elimination of the majority (851 nucleotides) of internal 5′UTR sequences not only maintained full IRES activity but also generated a significantly more potent IRES. Activity of the 163-bp long “improved” IRES element was abrogated, however, following substitution of a few bases near the 5′ terminus as well as substitutions close to the translation start codon. Both the full-length 5′UTR and its truncated version function as translational enhancers in the context of a monocistronic mRNA.  相似文献   
245.
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid-storage disease caused by mutations in the sterol 27-hydroxylase gene (CYP27). So far several mutations causing CTX have been identified and characterized. A new mutation creating an insertion of cytosine at position 6 in the cDNA, which is expected to result in a frameshift and a premature termination codon at codon 179, has been identified in a French family. The mutation creates a new site for the restriction endonuclease HaeIII.  相似文献   
246.
The Neurospora crassa Mps One Binder (MOB) proteins MOB2A and MOB2B physically interact with the Nuclear Dbf2 Related (NDR) kinase COT1 and have been shown to have overlapping functions in various aspects of asexual development. Here, we identified two N. crassa MOB2A residues, Tyr117 and Tyr119, which are potentially phosphorylated. Using phosphomimetic mob‐2a mutants we have been able to establish that apart from their previously described roles, MOB2A/B are involved in additional developmental processes. Enhanced conidial germination, accompanied by conidial agglutination, in the phosphomimetic mutants indicated that MOB2A is a negative regulator of germination. Thick‐section imaging of perithecia revealed slow maturation and a lack of asci alignment in the mutant strains demonstrating a role for MOB2A in sexual development. We demonstrate that even though MOB2A and MOB2B have some overlapping functions, MOB2B cannot compensate for the roles MOB2A has in conidiation and germination. Altering Tyr residues 117 and 119 impaired the physical interactions between MOB2A and COT1, most likely contributing to some of the observed effects. As cot‐1 and the phosphomimetic mutants share an extragenic suppressor (gul‐1), we concluded that at least some of the effects imposed by altering Tyr117 and Tyr119 are mediated by the NDR kinase.  相似文献   
247.
Recent advances in the bioengineering field have introduced new opportunities enabling cell encapsulation in three-dimensional (3D) structures using either various natural or synthetic materials. However, such hydrogel scaffolds have not been fully biocompatible for cell cultivation due to the lack of physical stability or bioactivity. Here, we utilized a uniquely fabricated semi-synthetic 3D polyethylene glycol-fibrinogen (PEG-Fb) hydrogel scaffold, which exhibits both high stability and high bioactivity, to encapsulate HEK293 cells for the production of human recombinant acetylcholine esterase (AChE). To examine the beneficial bioactive effect of the PEG-Fb scaffold over 2D surfaces, an experimental system was established to compare the viability, proliferation and AChE secretion of encapsulated cells versus non-encapsulated surface-adherent cells in serum starvation. Our results show that the transfer of surface-adherent HEK293 cells from fully enriched medium with 10% FCS to 0.2% FCS resulted in an eightfold reduction in cell number and a fourfold reduction in AChE production. In contrast, the encapsulated cells were highly viable and about twofold more efficient in AChE production. In addition, they had round morphology with a twofold larger cell diameter, supporting the observation of increased AChE production. These results suggest a role of the PEG-Fb scaffold in providing a supportive microenvironment in reduced serum conditions that enhances encapsulated cell functions, opening new directions to study the implementation of this platform in large-scale pharmaceutical protein production.  相似文献   
248.
Early breeding intraguild predators may have advantages over late breeding predators via priority effects; early breeding predators may reduce shared prey resources before late breeders appear and may also prey upon the late breeders. Here we show that predatory larvae of the late-breeding predatory banded newt, Triturus vittatus vittatus, occupy the same temporary pond toward the end of the developmental period of the early-breeding predatory fire salamander, Salamandra salamandra, resulting in a large size disparity between larvae of these two species while they co-occur. We conducted outdoor artificial pool experiments to assess priority effects of large larval Salamandra at the end of their larval development period, on recently hatched larval Triturus. We also assessed how artificial vegetation may influence larval Triturus performance in the presence or absence of Salamandra Salamandra, introduced into the experimental pools two weeks prior to the newt larvae, strongly reduced invertebrate prey abundance shared by these two predatory urodeles and with only a one week period of overlap, strongly reduced abundance of Triturus larvae. The artificial vegetation had only a small ameliorating effect on Triturus survival when Salamandra was present. Triturus size at metamorphosis (snout-tail length) was significantly larger in the Salamandra pools, presumably due to a combination of a strong “thinning effect” and greater vulnerability of smaller Triturus individuals to predation by Salamandra. Time to metamorphosis was not significantly affected by Salamandra. These results have conservation implications as T. v. vittatus is listed as highly endangered and may also explain the largely negative spatial association of the two species. Handling editor: K. Martens  相似文献   
249.
250.
Differential interactions between Beclin 1 and Bcl-2 family members   总被引:1,自引:0,他引:1  
Autophagy, a cellular degradation system, promotes both cell death and survival. The interaction between Bcl-2 family proteins and Beclin 1, a Bcl-2 interacting protein that promotes autophagy, can mediate crosstalk between autophagy and apoptosis. We investigated the interaction between anti-and pro-apoptotic Bcl-2 proteins with Beclin 1. Our results show that Beclin 1 directly interacts with Bcl-2, Bcl-x(L), Bcl-w and to a lesser extent with Mcl-1. Beclin 1 does not bind the pro-apoptotic Bcl-2 proteins. The interaction between Beclin 1 and the anti-apoptotic protein Bcl-x(L) was inhibited by BH3-only proteins, but not by multi-domain proteins. Sequence alignment and structural modeling suggest that Beclin 1 contains a putative BH3-like domain which may interact with the hydrophobic grove of Bcl-x(L). Mutation of the Beclin 1 amino acids predicted to mediate this interaction inhibited the association of Beclin 1 with Bcl-x(L). Our results suggest that BH3 only proapoptotic Bcl-2 proteins may modulate the interactions between Bcl-x(L) and Beclin 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号