首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1417篇
  免费   120篇
  2022年   8篇
  2021年   22篇
  2020年   11篇
  2019年   20篇
  2018年   26篇
  2017年   14篇
  2016年   35篇
  2015年   63篇
  2014年   67篇
  2013年   79篇
  2012年   130篇
  2011年   86篇
  2010年   51篇
  2009年   67篇
  2008年   73篇
  2007年   79篇
  2006年   93篇
  2005年   91篇
  2004年   92篇
  2003年   79篇
  2002年   64篇
  2001年   10篇
  2000年   6篇
  1999年   16篇
  1998年   24篇
  1997年   14篇
  1996年   8篇
  1995年   16篇
  1994年   6篇
  1993年   12篇
  1992年   9篇
  1991年   7篇
  1990年   10篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1975年   4篇
  1974年   5篇
  1972年   11篇
  1971年   5篇
  1968年   4篇
  1967年   5篇
  1939年   3篇
排序方式: 共有1537条查询结果,搜索用时 15 毫秒
951.
Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.  相似文献   
952.
953.
Searchable high-resolution 2D gel proteome of the human colon crypt   总被引:2,自引:0,他引:2  
We seek alterations in protein patterns at the earliest possible step on the path to cancer, namely, in cells of the target tissue from normal persons versus the corresponding normally appearing cells from persons who are heterozygous for mutation in a tumor suppressor gene that predisposes strongly to carcinoma in that tissue. To begin a systematic comparison of the proteomes of cells from normal and from neoplastic colons, we have undertaken the isolation of human colon crypts that are derived from the normal-appearing mucosa of left (descending) colon of patients with sporadic colorectal cancer. Two-dimensional (2D) gel electrophoresis is a proteomic approach that excels in the resolution of protein isoforms. Here, we document the practicality of this approach with human samples using gels of three overlapping pH ranges. For the first time, about 800 nonredundant proteins and 900 isoforms from purified human colonic crypts were identified, permitting an assessment of the contributions of protein isoforms. These interactive, searchable, hyperlink-enabled proteome maps and gene ontology analyses will facilitate future studies to discover the earliest markers and intervention targets during progression to colon cancer.  相似文献   
954.
Mathew R  White E 《Autophagy》2007,3(5):502-505
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.  相似文献   
955.
The purpose of the study was to investigate the genetic diversity of Dinophysis species from around the Scottish coast, with a view to an improved understanding of the dynamics and identification of this genus in Scottish waters. Single-cell PCR amplification with direct sequencing was performed on a total of 441 Dinophysis cells isolated from both live and Lugol's fixed plankton net samples. Universal eukaryotic primers were used to amplify the large subunit (LSU) ribosomal RNA (rRNA) gene of the Dinophysis isolates, with a frequency of PCR success of 26% for non-fixed and 48% for fixed samples. From this a total of 30 isolates were selected for this study and the D1–D2 region of the LSU-rRNA gene sequenced for phylogenetic analysis. No significant correlation could be made between geographical location and LSU sequence, although some regional sequence heterogeneity was observed within the Dinophysis acuta species. LSU sequence data was used to design Dinophysis genus specific and Dinophysis clade-specific primers primarily to ensure clean sequences from universal D1–D2 amplicons without a requirement for cloning. Three clade-specific primers designed to a region within the D2 hypervariable region of the LSU-rRNA gene allowed discrimination of Dinophysis acuminata/norvegica from Dinophysis tripos/caudata and Dinophysis fortii/acuta. In two isolates, SC359 (D. tripos) and LC58 (D. acuta), nested PCR products were observed with both the expected clade-specific primer, and Dasd-R2, the D. acuminata/norvegica clade-specific primer. Cloning and sequence analysis suggested that these amplicons were genuine “D. acuminata-like” sequences and their presence, albeit at a low frequency within different Dinophysis species, indicated that individual Dinophysis cells possess heterologous copies of the LSU-rRNA gene that are similar to LSU sequences normally associated with D. acuminata. The nature of the process that generated these hybrid cells, the frequency of such events and their importance is as yet unknown, but may provide a cautionary note for the development of PCR-based species specific detection methods.  相似文献   
956.
Shigella and enterotoxigenic Escherichia coli (ETEC) are among the top four enteric pathogens that cause diarrheal illness in young children in developing countries and are major etiologic agents of travellers' diarrhoea. A single vaccine that could target both of these pathogens would have significant public health impact. In this review, we highlight the many pivotal contributions of Phillippe Sansonetti to the identification of molecular mechanisms of pathogenesis of Shigella that paved the way for the development of rationally designed, novel vaccines candidates. The CVD developed a series of live attenuated Shigella vaccine strains based on the most prevalent serotypes associated with disease. Shigella vaccine strains were engineered to express critical ETEC antigens to form a broadly protective Shigella‐ETEC multivalent vaccine.  相似文献   
957.
958.

Introduction

The South American country Chile now boasts a life expectancy of over 80 years. As a consequence, Chile now faces the increasing social and economic burden of cancer and must implement political policy to deliver equitable cancer care. Hindering the development of a national cancer policy is the lack of comprehensive analysis of cancer infrastructure and economic impact.

Objectives

Evaluate existing cancer policy, the extent of national investigation and the socio-economic impact of cancer to deliver guidelines for the framing of an equitable national cancer policy.

Methods

Burden, research and care-policy systems were assessed by triangulating objective system metrics – epidemiological, economic, etc. – with political and policy analysis. Analysis of the literature and governmental databases was performed. The oncology community was interviewed and surveyed.

Results

Chile utilizes 1% of its gross domestic product on cancer care and treatment. We estimate that the economic impact as measured in Disability Adjusted Life Years to be US$ 3.5 billion. Persistent inequalities still occur in cancer distribution and treatment. A high quality cancer research community is expanding, however, insufficient funding is directed towards disproportionally prevalent stomach, lung and gallbladder cancers.

Conclusions

Chile has a rapidly ageing population wherein 40% smoke, 67% are overweight and 18% abuse alcohol, and thus the corresponding burden of cancer will have a negative impact on an affordable health care system. We conclude that the Chilean government must develop a national cancer strategy, which the authors outline herein and believe is essential to permit equitable cancer care for the country.  相似文献   
959.
Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (PIs) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a first-generation PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.  相似文献   
960.
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号