首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   148篇
  2022年   11篇
  2021年   26篇
  2020年   13篇
  2019年   23篇
  2018年   29篇
  2017年   15篇
  2016年   39篇
  2015年   81篇
  2014年   79篇
  2013年   100篇
  2012年   149篇
  2011年   99篇
  2010年   63篇
  2009年   68篇
  2008年   91篇
  2007年   87篇
  2006年   104篇
  2005年   106篇
  2004年   105篇
  2003年   97篇
  2002年   72篇
  2001年   22篇
  2000年   19篇
  1999年   27篇
  1998年   29篇
  1997年   18篇
  1996年   9篇
  1995年   21篇
  1994年   7篇
  1993年   15篇
  1992年   14篇
  1991年   15篇
  1990年   14篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   19篇
  1985年   11篇
  1984年   7篇
  1983年   9篇
  1982年   11篇
  1981年   12篇
  1980年   9篇
  1979年   13篇
  1978年   9篇
  1974年   8篇
  1972年   14篇
  1971年   9篇
  1970年   6篇
  1967年   8篇
排序方式: 共有1916条查询结果,搜索用时 31 毫秒
41.
42.
43.
Fertilization by more than one sperm causes polyploidy, a condition that is generally lethal to the embryo in the majority of animal species. To prevent this occurrence, eggs have developed a series of mechanisms that block polyspermy at the level of the plasma membrane or their extracellular coat. In this review, we first introduce the mammalian egg coat, the zona pellucida (ZP), and summarize what is currently known about its composition, structure, and biological functions. We then describe how this specialized extracellular matrix is modified by the contents of cortical granules (CG), secretory organelles that are exocytosed by the egg after gamete fusion. This process releases proteases, glycosidases, lectins and zinc onto the ZP, resulting in a series of changes in the properties of the egg coat that are collectively referred to as hardening. By drawing parallels with comparable modifications of the vitelline envelope of nonmammalian eggs, we discuss how CG‐dependent modifications of the ZP are thought to contribute to the block to polyspermy. Moreover, we argue for the importance of obtaining more information on the architecture of the ZP, as well as systematically investigating the many facets of ZP hardening.  相似文献   
44.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
45.
Recoveries of gray seal (Halichoerus grypus) populations across their eastern Atlantic distribution have led to a steady increase in seal-fishery interactions. Fishers have estimated depredation of salmonids (Salmo spp.) and monkfish (Lophius spp.) as high as 40% and 59% respectively in Ireland. However, empirical evidence for the consumption of these species has been extremely limited due to diagnostic hard part remains not being found in scats or stomach samples. We applied species-specific primers and tested for the presence of monkfish and salmonids in gray seal diet genetically using quantitative polymerase chain reaction (qPCR) on scats. Monkfish occurred in 29.7% of sampled scats, while salmonids occurred in 12.7%. Seasonal and regional variability in occurrence were noted for both species, likely related to the migratory behavior of the prey species and proximity of seal haul-outs to aquaculture sites. Traditional hard part analysis of scats, including scats that tested positive for monkfish and salmonid DNA, failed to find any evidence of either species. This study provides important empirical evidence for the consumption of these species in Ireland that can inform management.  相似文献   
46.
The parental food compensation hypothesis suggests that parents may compensate for the negative effects of parasites on chicks by increased food provisioning. However, this ability differs widely among host species and may also depend on ecological factors such as adverse weather conditions and habitat quality. Although weed management can improve habitat quality, management measures can bring about a temporary decrease in food availability and thus may reduce parents’ ability to provide their nestlings with enough energy. In our study we investigated the interaction of parasitism and weed management, and the influence of climate on feeding rates in a Darwin’s tree finch species, which is negatively impacted by two invasive species. The larvae of the invasive parasitic fly Philornis downsi ingest the blood and body tissues of tree finch nestlings, and the invasive Blackberry Rubus niveus affects one of the main habitats of Darwin’s tree finches. We compared parental food provisioning of the Small Tree Finch Camarhynchus parvulus in parasitized and parasite‐free nests in three different areas, which differed in invasive weed management (no management, short‐term and long‐term management). In a parasite reduction experiment, we investigated whether the Small Tree Finch increases food provisioning rates to nestlings when parasitized and whether this ability depends on weed management conditions and precipitation. Our results provide no evidence that Small Tree Finches can compensate with additional food provisioning when parasitized with P. downsi. However, we found an increase in male effort in the short‐term management area, which might indicate that males compensate for lower food quality with increased provisioning effort. Furthermore, parental food provisioning was lower during rainfall, which provides an explanation for the negative influence of rain on breeding success found in earlier studies. Like other Darwin’s finches, the Small Tree Finch seems to lack the ability to compensate for the negative effects of P. downsi parasitism, which is one explanation for why this invasive parasite has such a devastating effect on this host species.  相似文献   
47.
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.  相似文献   
48.
Although females suffer twice as much as males from stress-related disorders, sex-specific participating and pathogenic cellular stress mechanisms remain uncharacterized. Using corticotropin-releasing factor receptor 2–deficient (Crhr2−/− ) and wild-type (WT) mice, we show that CRF receptor type 2 (CRF2) and its high-affinity ligand, urocortin 1 (Ucn1), are key mediators of the endoplasmic reticulum (ER) stress response in a murine model of acute pancreatic inflammation. Ucn1 was expressed de novo in acinar cells of male, but not female WT mice during acute inflammation. Upon insult, acinar Ucn1 induction was markedly attenuated in male but not female Crhr2−/− mice. Crhr2−/− mice of both sexes show exacerbated acinar cell inflammation and necrosis. Electron microscopy showed mild ER damage in WT male mice and markedly distorted ER structure in Crhr2−/− male mice during pancreatitis. WT and Crhr2−/− female mice showed similarly distorted ER ultrastructure that was less severe than distortion seen in Crhr2−/− male mice. Damage in ER structure was accompanied by increased ubiquitination, peIF2, and mistargeted localization of vimentin in WT mice that was further exacerbated in Crhr2−/− mice of both sexes during pancreatitis. Exogenous Ucn1 rescued many aspects of histological damage and cellular stress response, including restoration of ER structure in male WT and Crhr2−/−mice, but not in females. Instead, females often showed increased damage. Thus, specific cellular pathways involved in coping and resolution seem to be distinct to each sex. Our results demonstrate the importance of identifying sex-specific pathogenic mechanisms and their value in designing effective therapeutics.  相似文献   
49.
The relationships between 49 naviculoid diatoms, currently arranged in 14 families and four orders were investigated using cladistic analysis in order to test the types of characters used in diatom systematics and to assess how well the current classification reflects possible phylogenetic relationships in this group. Some of the families and orders comprise taxa with different protoplast characters, or taxa with similar protoplast arrangements are placed in separate families or orders. Therefore as both cell wall and protoplast characters were used, three analyses were undertaken; total data, protoplast data and frustule data. The analyses support the recognition of the Mastogloiales (unequivocally) and the Cymbellales (largely) but indicate that some of the familial groupings are more ambiguous. The members of the Berkeleyaceae, Berkeleya, Parlibellus and Climaconeis, were never grouped together and Achnanthes brevipes never grouped with the other monoraphid diatoms, but usually with members of the Mastogloiales (total and protoplast data). Similarly, Round et al.’s familial groupings within the Cymbellales do not emerge from our analyses. Our results support the hypothesis that monoraphid genera have arisen independently from different naviculoid diatoms, and that Achnanthes sensu stricto should be transferred to the Mastogloiales. Some of the problems associated with incomplete information and inaccurate terminology are discussed briefly.  相似文献   
50.
The ribosome decodes mRNA by monitoring the geometry of codon–anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号