首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1560篇
  免费   153篇
  2022年   11篇
  2021年   26篇
  2020年   11篇
  2019年   20篇
  2018年   26篇
  2017年   18篇
  2016年   42篇
  2015年   71篇
  2014年   73篇
  2013年   88篇
  2012年   140篇
  2011年   98篇
  2010年   56篇
  2009年   71篇
  2008年   76篇
  2007年   87篇
  2006年   108篇
  2005年   97篇
  2004年   96篇
  2003年   82篇
  2002年   69篇
  2001年   12篇
  2000年   9篇
  1999年   19篇
  1998年   27篇
  1997年   15篇
  1996年   9篇
  1995年   20篇
  1994年   10篇
  1993年   13篇
  1992年   16篇
  1991年   11篇
  1990年   15篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   11篇
  1981年   13篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1974年   6篇
  1972年   11篇
  1971年   5篇
  1967年   5篇
  1957年   4篇
排序方式: 共有1713条查询结果,搜索用时 15 毫秒
91.
The Staphylococcus aureus DtxR-like protein, MntR, controls expression of the mntABC and mntH genes, which encode putative manganese transporters. Mutation of mntABC produced a growth defect in metal-depleted medium and increased sensitivity to intracellularly generated superoxide radicals. These phenotypes resulted from diminished uptake of manganese and were rescued by the addition of excess Mn(II). Resistance to superoxide was incompletely rescued by Mn(II) for STE035 (mntA mntH), and the strain had reduced virulence in a murine abscess model of infection. Expression of mntABC was repressed by Mn(II) in an MntR-dependent manner, which contrasts with the expression of mntH that was not repressed in elevated Mn(II) and was decreased in an mntR mutant. This demonstrates that MntR acts as a negative and positive regulator of these loci respectively. PerR, the peroxide resistance regulon repressor, acts with MntR to control the expression of mntABC and manganese uptake. The expression of the PerR-regulated genes, katA (catalase), ftn (ferritin) and fur (ferric uptake regulator), was diminished in STE031 (mntR) when grown in excess Mn(II). Therefore, the control of Mn(II)-regulated members of the PerR regulon and the Fur protein is modulated by MntR through its control of Mn(II) uptake. The co-ordinated regulation of metal ion homeostasis and oxidative stress resistance via the regulators MntR, PerR and Fur of S. aureus is discussed.  相似文献   
92.
Phosphorothioate (PS)-capped phosphodiester (PE) oligodeoxynucleotides (ODNs) were used to determine whether the dopamine-dependent locomotor-stimulant effect of nicotine is mediated via a4 subunit-containing nicotinic receptors. To this end, rats received direct intraventral tegmental area infusion of a4 antisense via osmotic minipump, and their locomotor response to nicotine (0.2 mg/kg, s.c.) was tested. Eight antisense ODNs were screened, but only one inhibited nicotine-induced locomotion. This inhibition was reversible and selective, insofar as basal (saline) activity was unaffected, and a mismatch ODN was without effect. However, antisense treatment also caused sequence-dependent toxic effects, including neuronal degeneration in the ventral tegmental area, dopaminergic denervation, and weight loss. We conclude that despite previous reports, PS-capped PE-ODNs can cause severe neurotoxicity on chronic infusion into brain tissue. Moreover, sequence dependence and temporal reversibility, two generally accepted criteria of antisense action, may sometimes reflect the occurrence of toxic effects and resultant functional compensation.  相似文献   
93.
There is a complex network of protein–protein and protein–lipid interactions that underlie clathrin-mediated vesicular traffic in all compartmentalized cells from yeast to man. Major progress has been made in the determination of the three-dimensional structures of many of the components. Recently, there has been an explosion in the identification and characterization of clathrin binding partners. This review integrates the structural and biochemical information that is currently available to present a unified view of how many clathrin binding partners interact with clathrin.  相似文献   
94.
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [V?r?s et al., Eur. J. Biochem. 251 (1998), 36-44], two full-length cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonate-treated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenase-derived products in the stroma and in the envelope. These data revealed jasmonate-induced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.  相似文献   
95.
Hepatic alcohol dehydrogenase (ADH) activity is higher in female than in male rats. Although sex steroids, thyroid, and growth hormone (GH) have been shown to regulate hepatic ADH, the mechanism(s) for sexual dimorphic expression is unclear. We tested the possibility that the GH secretory pattern determined differential expression of ADH. Gonadectomized and hypophysectomized male and female rats were examined. Hepatic ADH activity was 2.1-fold greater in females. Because protein and mRNA content were also 1.7- and 2.4-fold greater, results indicated that activity differences were due to pretranslational mechanisms. Estradiol increased ADH selectively in males, and testosterone selectively decreased activity and mRNA levels in females. Effect of sex steroids on ADH was lost after hypophysectomy; infusion of GH in males increased ADH to basal female levels, supporting a role of the pituitary-liver axis. However, GH and L-thyroxine (T4) replacements alone in hypophysectomized rats did not restore dimorphic differences for either ADH activity or mRNA levels. On the other hand, T4 in combination with intermittent administration of GH reduced ADH activity and mRNA to basal male values, whereas T4 plus GH infusion replicated female levels. These results indicate that the intermittent male pattern of GH secretion combined with T4 is the principal determinant of low ADH activity in male liver.  相似文献   
96.
The machinery mediating chromosome condensation is poorly understood. To begin to dissect the in vivo function(s) of individual components, we monitored mitotic chromosome structure in mutants of condensin, cohesin, histone H3, and topoisomerase II (topo II). In budding yeast, both condensation establishment and maintenance require all of the condensin subunits, but not topo II activity or phospho-histone H3. Structural maintenance of chromosome (SMC) protein 2, as well as each of the three non-SMC proteins (Ycg1p, Ycs4p, and Brn1p), was required for chromatin binding of the condensin complex in vivo. Using reversible condensin alleles, we show that chromosome condensation does not involve an irreversible modification of condensin or chromosomes. Finally, we provide the first evidence of a mechanistic link between condensin and cohesin function. A model discussing the functional interplay between cohesin and condensin is presented.  相似文献   
97.
SUMMARY: RED-T is a Java application for phylogenetic analysis based on a unique method, RED, that utilizes the ratios of evolutionary distances E(d) to distinguish between alternative evolutionary histories. RED-T allows the user to examine if any given experimental gene shares the same evolutionary history as the designated control gene(s). Moreover, the tool detects any differences in evolutionary history and allows the user to examine comparisons of E(d) for a likely explanation. Lateral gene transfer, which may have a significant influence in organismal evolution is one mechanism that could explain the findings of these RED-T analyses. AVAILABILITY: The application is available online at http://www.arches.uga.edu/~whitman/RED.  相似文献   
98.
Sulfate-reducing bacteria (SRB) in anoxic waters and sediments are the major producers of methylmercury in aquatic systems. Although a considerable amount of work has addressed the environmental factors that control methylmercury formation and the conditions that control bioavailability of inorganic mercury to SRB, little work has been undertaken analyzing the biochemical mechanism of methylmercury production. The acetyl-coenzyme A (CoA) pathway has been implicated as being key to mercury methylation in one SRB strain, Desulfovibrio desulfuricans LS, but this result has not been extended to other SRB species. To probe whether the acetyl-CoA pathway is the controlling biochemical process for methylmercury production in SRB, five incomplete-oxidizing SRB strains and two Desulfobacter strains that do not use the acetyl-CoA pathway for major carbon metabolism were assayed for methylmercury formation and acetyl-CoA pathway enzyme activities. Three of the SRB strains were also incubated with chloroform to inhibit the acetyl-CoA pathway. So far, all species that have been found to have acetyl-CoA activity are complete oxidizers that require the acetyl-CoA pathway for basic metabolism, as well as methylate mercury. Chloroform inhibits Hg methylation in these species either by blocking the methylating enzyme or by indirect effects on metabolism and growth. However, we have identified four incomplete-oxidizing strains that clearly do not utilize the acetyl-CoA pathway either for metabolism or mercury methylation (as confirmed by the absence of chloroform inhibition). Hg methylation is thus independent of the acetyl-CoA pathway and may not require vitamin B(12) in some and perhaps many incomplete-oxidizing SRB strains.  相似文献   
99.
Mice homozygous for an allele encoding the selenocysteine (Sec) tRNA [Ser]Sec gene (Trsp) flanked by loxP sites were generated. Cre recombinase-dependent removal of Trsp in these mice was lethal to embryos. To investigate the role of Trsp in mouse mammary epithelium, we deleted this gene by using transgenic mice carrying the Cre recombinase gene under control of the mouse mammary tumor virus (MMTV) long terminal repeat or the whey acidic protein promoter. While both promoters target Cre gene expression to mammary epithelium, MMTV-Cre is also expressed in spleen and skin. Sec tRNA [Ser]Sec amounts were reduced by more than 70% in mammary tissue with either transgene, while in skin and spleen, levels were reduced only with MMTV-Cre. The selenoprotein population was selectively affected with MMTV-Cre in breast and skin but not in the control tissue, kidney. Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced. Expression of the tumor suppressor genes BRCA1 and p53 was also altered in a contrasting manner in MMTV-Cre mice, suggesting greater susceptibility to cancer and/or increased cell apoptosis. Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号