首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1753篇
  免费   91篇
  国内免费   5篇
  2022年   8篇
  2021年   23篇
  2020年   5篇
  2019年   13篇
  2018年   15篇
  2017年   16篇
  2016年   35篇
  2015年   38篇
  2014年   49篇
  2013年   172篇
  2012年   111篇
  2011年   121篇
  2010年   71篇
  2009年   72篇
  2008年   117篇
  2007年   108篇
  2006年   112篇
  2005年   120篇
  2004年   104篇
  2003年   95篇
  2002年   89篇
  2001年   10篇
  2000年   8篇
  1999年   20篇
  1998年   15篇
  1997年   24篇
  1996年   15篇
  1995年   22篇
  1994年   20篇
  1993年   14篇
  1992年   15篇
  1991年   13篇
  1990年   12篇
  1989年   6篇
  1988年   11篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   8篇
  1983年   9篇
  1982年   21篇
  1981年   16篇
  1980年   12篇
  1979年   5篇
  1978年   9篇
  1976年   7篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
排序方式: 共有1849条查询结果,搜索用时 15 毫秒
101.
Aniline-degraders were isolated from activated sludge and environmental samples and classified into eight phylogenetic groups. Seven groups were classified into Gram-negative bacteria, such as Acidovorax sp., Acinetobacter sp., Delftia sp., Comamonas sp., and Pseudomonas sp., suggesting the possible dominance of Gram-negative aniline-degraders in the environment. Aniline degradative genes were cloned from D. acidovorans strain 7N, and the nucleotide sequence of the 8,039-bp fragment containing eight open reading frames was determined. Their deduced amino acid sequences showed homologies to glutamine synthetase (GS)-like protein, glutamine amidotransferase (GA)-like protein, large and small subunits of aniline dioxygenase, reductase, LysR-type regulator, small ferredoxin-like protein, and catechol 2,3-dioxygenase, suggesting a high similarity of this gene cluster to those in P. putida strain UCC22 and Acinetobacter sp. strain YAA. Polymerase chain reaction (PCR) and sequencing analyses of GS-like protein gene segments of other Gram-negative bacteria suggested that Gram-negative bacteria have aniline degradative gene that can be divided into two distinctive groups.  相似文献   
102.
It is well known that angiogenesis is essential for the replacement of cartilage by bone during skeletal growth and regeneration. To address angiogenesis of endochondral ossification in the condyle, we examined the appearance of vascular endothelial growth factor (VEGF) and its receptor Flt-1 in condylar cartilage of the growing rat. The early expression of VEGF at various sites during condylar cartilage development indicates that VEGF plays a role in the regulation of angiogenesis at each site of bone formation. From the findings of Flt-1 immunoreactivity, the VEGF produced by the chondrocytes of the hypertrophic zone should contribute to the promotion of endothelial cell proliferation and to stimulate migration and activation of osteoclasts in condylar cartilage, resulting in the invasion of these cells into the mineralized zone.Junko Aoyama and Eiji Tanaka contributed equally to this work  相似文献   
103.
A rat pheochromocytoma cell line (PC12), when transfected with beta1,4-N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulted in the suppression of neurite outgrowth induced by costimulation of epidermal growth factor (EGF) and integrins. The neurite outgrowth was restored by the overexpression of a constitutively activated mitogen- or extracellular signal-regulated kinase kinase-1 (MEK-1). Consistent with this, the EGF receptor (EGFR)-mediated ERK activation was blocked in GnT-III transfectants. Conversely, the overexpression of dominant negative MEK-1 or treatment with PD98059, a specific inhibitor of MEK-1, inhibited neurite outgrowth in controls transfected with mock. Furthermore GnT-III activity is required for these inhibitions, because the overexpression of a dominant negative GnT-III mutant (D321A) failed to reduce neurite outgrowth and EGFR-mediated ERK activation. Lectin blot analysis confirmed that EGFR from wild-type GnT-III transfectants had been modified by bisecting GlcNAc in its N-glycan structures. This modification led to a significant decrease in EGF binding and EGFR autophosphorylation. Collectively, the results constitute a comprehensive body of evidence to show clearly that the overexpression of GnT-III prevents neurite outgrowth induced by costimulation of EGF and integrins through the Ras/MAPK activation pathway and indicates that GnT-III may be an important regulator for cell differentiation in neural tissues.  相似文献   
104.
In the present study, we examined the developmental ability of enucleated zygotes, MII oocytes, and parthenogenetically activated oocytes at pronuclear stages (parthenogenetic PNs) as recipient cytoplasm for rat embryonic cell nuclear transfer. Enucleated zygotes as recipient cytoplasm receiving two-cell nuclei allowed development to blastocysts, whereas the development of embryos reconstituted with MII oocytes and parthenogenetic PNs was arrested at the two-cell stage. Previous observations in rat two-cell embryos suggested that the distribution of microtubules is involved in two-cell arrest. Therefore, we also examined the distribution of microtubules using immunofluorescence. At the two-cell stage after nuclear transfer into enucleated zygotes, microtubules were distributed homogeneously in the cytoplasm during interphase, and normal mitotic spindles were observed in cleaving embryos from the two- to four-cell stage. In contrast, embryos reconstituted with MII oocytes and parthenogenetic PNs showed aberrant microtubule organization. In enucleated zygotes, fibrous microtubules were distributed homogeneously in the cytoplasm. In contrast, dense microtubules were localized at the subcortical area in the cytoplasm and strong immunofluorescence intensity was observed at the plasma membrane, while very weak intensity was detected in the central part of enucleated MII oocytes. In enucleated parthenogenetic PNs, high-density and fibrous microtubules were distributed in the subcortical and central areas, respectively. Pre-enucleated parthenogenetic PNs also showed lower intensity of microtubule immunofluorescence in the central cytoplasm than zygotes. In conclusion, the results of the present study showed that zygote cytoplasm is better as recipient than MII oocyte and parthenogenetic PNs for rat two-cell embryonic cell nuclear transfer to develop beyond four-cell stage. Furthermore, microtubule organization is involved in the development of reconstituted embryos to overcome the two-cell arrest.  相似文献   
105.
Time-sequential responses to endothelium-dependent and -independent vasodilators and angiotensin-converting enzyme (ACE) inhibitors were studied in the subendocardial arterioles (Endo) of canine renovascular hypertension (HT) compared with subepicardial arterioles (Epi; both <120 microm) by charge-coupled device intravital microscope. Vascular responses to acetylcholine, papaverine, and cilazaprilat were compared between normotensive (NT) and HT dogs [4 wk and 12 wk of HT (4wHT and 12wHT)]. The acetylcholine-induced vasodilation of Endo in both 4wHT and 12wHT was smaller than that of NT (both P < 0.01 vs. 4wHT and 12wHT), and that of Epi was smaller than that of NT only in 12wHT (P < 0.05). The papaverine-induced vasodilation of Endo, but not Epi, was impaired only in 12wHT (both P < 0.01 vs. NT and 4wHT). Vasodilation by cilazaprilat remained unchanged at 4wHT and 12wHT in both Epi and Endo. In conclusion, at the early stage, the endothelium-dependent response of Endo was impaired, whereas at the later stage, the endothelium-dependent and -independent responses of Endo and the endothelium-dependent response of Epi were impaired. However, the vasodilatory responses to the ACE inhibitor were maintained in both Endo and Epi of HT.  相似文献   
106.
In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or 2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4-and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16-and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8-to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continued development of the injected embryos. These results indicate that cells overexpressed with SAMDC undergo apoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a “fall-safe“ mechanism to eliminate physiologically-severely damaged cells to save the rest of the embryo.  相似文献   
107.
In vivo post-ovulatory aging of oocytes significantly affects the development of oocytes and embryos. Also, oocyte aging alters the regulation of the intracellular calcium concentration, thus affecting Ca(2+) oscillations in fertilized oocytes. Because reactive oxygen species (ROS) are known to significantly perturb Ca(2+) homeostasis mainly through direct effects on the machinery involved in intracellular Ca(2+) storage, we hypothesized that the poor development of aged oocytes that may have been exposed to oxidative stress for a prolonged time might arise from impaired Ca(2+)-oscillation-dependent signaling. The fertilization rates of aged oocytes and of fresh oocytes treated with 100 microM hydrogen peroxide (H(2)O(2)) for 10 min were significantly lower than that of fresh oocytes. Comparing within the fertilized oocytes, blastocyst formation was decreased while embryo fragmentation was increased similarly in the aged and H(2)O(2)-treated fresh oocytes. The frequency of Ca(2+) oscillations was significantly increased whereas the amplitude of individual Ca(2+) transients was lowered in the aged and H(2)O(2)-treated fresh oocytes. The rates of rise and decline in individual Ca(2+) transients were decreased in these oocytes, indicating impaired Ca(2+) handling. When lipid peroxidation was assessed using 4,4-difluoro-5-(4-phenyl-1,3-buttadienyl)-4-bora-3a, 4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY) in unfertilized oocytes placed in a 5% CO(2) in air atmosphere, the green fluorescence (indicating lipid peroxidation) increased faster in the aged oocytes than in the fresh oocytes. Furthermore, the green fluorescence in the aged oocytes was already approximately 20 times higher than that in the fresh oocytes at the beginning of the measurements. These findings support the idea that Ca(2+) oscillations play a key role in the development of fertilized aged oocytes.  相似文献   
108.
LFA-1 (CD11a/CD18) plays a crucial role in various inflammatory responses. In this study, we show that LFA-1(-/-) mice are far more resistant to Listeria monocytogenes infection than LFA-1(+/-) mice. Consistent with this, we found the following: 1) the numbers of granulocytes infiltrating the liver were markedly higher in LFA-1(-/-) mice than in LFA-1(+/-) mice, 2) increased antilisterial resistance in LFA-1(-/-) mice was abrogated by depletion of granulocytes, and 3) the numbers of granulocytes in peripheral blood, and the serum levels of both G-CSF and IL-17 were higher in LFA-1(-/-) mice than in LFA-1(+/-) mice. Neither spontaneous apoptosis nor survival of granulocytes from LFA-1(-/-) mice were affected by physiological concentrations of G-CSF. Our data suggest regulatory effects of LFA-1 on G-CSF and IL-17 secretion, and as a corollary on neutrophilia. Consequently, we conclude that increased resistance of LFA-1(-/-) mice to listeriosis is due to neutrophilia facilitating liver infiltration by granulocytes promptly after L. monocytogenes infection, although it is LFA-1 independent.  相似文献   
109.
Peripheral T lymphocytes undergo activation by antigenic stimulation and function in hypoxic areas of inflammation. We demonstrated in CD3-positive human T cells accumulating in inflammatory tissue expression of the hypoxia-inducible factor-1alpha (HIF-1alpha), indicating a role of hypoxia-mediated signals in regulation of T cell function. Surprisingly, accumulation of HIF-1alpha in human T cells required not only hypoxia but also TCR/CD3-mediated activation. Moreover, hypoxia repressed activation-induced cell death (AICD) by TCR/CD3 stimulation, resulting in an increased survival of the cells. Microarray analysis suggested the involvement of HIF-1 target gene product adrenomedullin (AM) in this process. Indeed, AM receptor antagonist abrogated hypoxia-mediated repression of AICD. Moreover, synthetic AM peptides repressed AICD even in normoxia. Taken together, we propose that hypoxia is a critical determinant of survival of the activated T cells via the HIF-1alpha-AM cascade, defining a previously unknown mode of regulation of peripheral immunity.  相似文献   
110.
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号