首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1721篇
  免费   88篇
  国内免费   5篇
  1814篇
  2023年   5篇
  2022年   10篇
  2021年   22篇
  2019年   13篇
  2018年   14篇
  2017年   15篇
  2016年   34篇
  2015年   38篇
  2014年   48篇
  2013年   166篇
  2012年   109篇
  2011年   119篇
  2010年   70篇
  2009年   73篇
  2008年   112篇
  2007年   107篇
  2006年   111篇
  2005年   119篇
  2004年   103篇
  2003年   92篇
  2002年   89篇
  2001年   13篇
  2000年   8篇
  1999年   20篇
  1998年   14篇
  1997年   24篇
  1996年   16篇
  1995年   21篇
  1994年   20篇
  1993年   14篇
  1992年   15篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   8篇
  1983年   9篇
  1982年   20篇
  1981年   16篇
  1980年   12篇
  1979年   5篇
  1978年   9篇
  1976年   7篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
  1972年   6篇
排序方式: 共有1814条查询结果,搜索用时 15 毫秒
991.
Acid carboxypeptidase fromAspergillus saitoi is a glycoprotein that contains both N-and O-linked sugar chains. The N-glycanase released high-mannose type oligosaccharides that were separated into eight components on HPLC. One, which had a unique structure of Man11GlcNAc2, was characterized. Mild alkali treatment of the carboxypeptidase, under conditions that effect -elimination, yieldedd-mannose. Deglycosylation of the carboxypeptidase with endo--N-acetylglucosaminidase and -mannosidase effected the reduction of the molecular mass from 72 kDa to 60 kDa. Partial changes of CD spectra of the native and the deglycosylated enzymes indicate that some conformational changes on the peptide of the enzyme occurred after deglycosylation. Other enzymatic properties, such as catalytic activity, pH, and thermal stability and resistivity to protease digestion, did not appear to change. Tunicamycin halted secretion of the carboxypeptidase extracellularly.  相似文献   
992.
The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized in the study of various genetic determinants. Here, we introduce a simple, rapid, low-cost and accurate procedure for the detection of SNPs by polyacrylamide gel electrophoresis (PAGE) with a novel additive, the Zn2+– cyclen complex (cyclen = 1,4,7,10-tetraazacyclododecane). The method is based on the difference in mobility of mutant DNA (in the same length) in PAGE, which is due to Zn2+–cyclen binding to thymine bases accompanying a total charge decrease and a local conformation change of target DNA. Various nucleotide substitutions (e.g. AT to GC) in DNA fragments (up to 150 bp) can be visualized with ethidium bromide staining. Furthermore, heteroduplex and homoduplex DNAs are clearly separated as different bands in the gel. We demonstrate the analysis of single- and multiple-nucleotide substitutions in a voltage-dependent sodium channel gene by using this novel procedure (Zn2+–cyclen–PAGE).  相似文献   
993.

Background

Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined.

Methodology/Principal Findings

Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs.

Conclusions/Significance

Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity.  相似文献   
994.
The glutathione S-transferases, LigF and LigE, of Sphingobium sp. strain SYK-6 respectively play a role in cleavage of the β-aryl ether of (+)-(βS)-α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV) and (-)-(βR)-MPHPV. The ligP gene, which showed 59% similarity to ligE at the amino acid level, was isolated from SYK-6. LigP produced in Escherichia coli revealed enantioselectivity for (-)-(βR)-MPHPV, and ligE and ligP alone contributed to the degradation of (-)-(βR)-MPHPV in SYK-6.  相似文献   
995.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.  相似文献   
996.
997.
A procedure has been developed for the isolation of gas bubbles from the cavities of leaves of Azolla rubra. Mature leaves of exponentially growing Azolla plants were carefully cut under water with a razor blade. The gas bubbles in the cavities were driven out by a stream of water running from a glass capillary and collected in another capillary that was filled with distilled water. This allowed the collection of a sufficient number of gas bubbles for analysis. The concentration of oxygen in the gas obtained was slightly lower than that in the external air. The diffusion of external 15N2 into the gas bubbles was low. The concentration of 15N2 in gas bubbles was only 2% of that of the external air even after incubation of Azolla plants in 15N2 in light or in darkness for 20 h. The method described here for isolation and analysis of gas bubbles should permit further studies of the properties of the gas bubbles in the cavities of Azolla leaves.  相似文献   
998.
Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene. Developing a state-of-art technology to avoid the variation of gene expression levels including gene silencing has been awaited. Here, we developed a novel binary plasmid (pTACAtg1) that is based on a transformation-competent artificial chromosome (TAC) vector, harboring long genomic DNA fragments on both sides of the cloning sites. As a case study, we cloned the cauliflower mosaic virus 35S promoter:β-glucuronidase (35S:GUS) gene cassettes into the pTACAtg1, and introduced it with long flanking sequences on the pTACAtg1 into the plants. In isolated transgenic plants, the copy number was reduced and the GUS expressions were detected more stably than those in the control plants carrying the insert without flanking regions. In our result, the reduced copy number of a transgene suppressed variation and silencing of its gene expression. The pTACAtg1 vector will be suitable for the production of stable transformants and for expression analyses of a transgene.  相似文献   
999.
New dichloro-, dimethyl-, and chloromethylphenylcarbamate derivatives of cyclodextrins (CDs) were prepared and their enantiomeric recognition abilities were evaluated as chiral stationary phases (CSPs) in normal phase high-performance liquid chromatography (HPLC). The effects of the type of cyclodextrins, the nature and position of the substituents on the phenyl ring, binding mode and spacer on the chiral recognition were studied in detail. No marked change of chiral recognition abilities was established by reversing the binding side of CDs (i.e., by the narrower [primary] opening of the cone-shaped CD to silica gel with the wider [secondary] opening sides). This result indirectly proves the previously drawn conclusion about the minor role of inclusion phenomena in chiral recognition in this case. Nevertheless, chiral recognition of these CSPs toward some compounds critically depends on the type of CDs used. All CD derivatives described in this study show rather low enantiomeric resolving abilities compared with corresponding polysaccharide (cellulose and amylose) derivatives, although very high enantioselectivity of separation was observed for a few compounds, such as racemic flavanone and cyclopropanedicarboxilic acid dianilide. © 1996 Wiley-Liss, Inc.  相似文献   
1000.
Based on the sequence information for bovine and yeast NADH-cytochrome b5 reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding β-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5′ end and AG at the 3′ end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号