首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   24篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   8篇
  2015年   17篇
  2014年   17篇
  2013年   16篇
  2012年   14篇
  2011年   20篇
  2010年   19篇
  2009年   19篇
  2008年   23篇
  2007年   25篇
  2006年   43篇
  2005年   21篇
  2004年   14篇
  2003年   17篇
  2002年   29篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1970年   3篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
401.
Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.  相似文献   
402.
403.
Metabolomics – the comprehensive analysis of metabolites – was recently used to classify yeast mutants with no overt phenotype using raw data as metabolic fingerprints or footprints. In this study, we demonstrate the estimation of a complicated phenotype, longevity, and semi‐rational screening for relevant mutants using metabolic profiles as strain‐specific fingerprints. The fingerprints used in our experiments are profiled data consisting of individually identified and quantified metabolites rather than raw spectrum data. We chose yeast replicative lifespan as a model phenotype. Several yeast mutants that affect lifespan were selected for analysis, and they were subjected to metabolic profiling using mass spectrometry. Fingerprinting based on the profiles revealed a correlation between lifespan and metabolic profile. Amino acids and nucleotide derivatives were the main contributors to this correlation. Furthermore, we established a multivariate model to predict lifespan from a metabolic profile. The model facilitated the identification of putative longevity mutants. This work represents a novel approach to evaluate and screen complicated and quantitative phenotype by means of metabolomics.  相似文献   
404.
We used morpholino groups to protect phosphate during the phosphorylation of the 5'-terminal ends of oligodeoxynucleotides, via phosphotriester and phosphoramidite intermediates. These groups could be removed selectively.  相似文献   
405.
Thermoresponsive magnetic nanoparticles with an upper critical solution temperature (UCST) in aqueous solution were synthesized for the first time. Named Therma-Max, the material was synthesized by redox copolymerization of N-acryloyl glycinamide with a monomer form of biotin using methacrylated dextran-magnetite. While the resulting Therma-Max was completely dispersed at temperatures above the UCST (18°C) and could not be separated by a permanent magnet, it was rapidly flocculated when the temperature fell below the UCST and was easily separated by a permanent magnet. The flocculated particles dispersed completely when the temperature was raised to above the UCST. Because biotin was immobilized on the Therma-Max, avidin and antibodies were subsequently immobilized with good efficiency. Furthermore, transiently transfected Arabidopsis protoplasts, which have surface display of CD4 antigen, were efficiently captured and enriched by using a biotinylated anti-CD4 antibody in combination with avidin-conjugated Therma-Max. Also, the silkworm storage protein (SP2) was efficiently separated from the silkworm hemolymph by using biotinylated anti-IgG antibody and anti-SP2 antibody in combination with avidin-conjugated Therma-Max. In both cases, it was confirmed that specificity and adsorption capacity were markedly improved by converting the conventional micro-size fine magnetic particles to nano-size particles. These results show the potential of Therma-Max with a UCST in bioaffinity separation of cells and biomolecules.  相似文献   
406.
407.
408.
409.
Y Uchimura  H Ishida  K Asada  H Mukai  I Kato 《Gene》1991,108(1):103-108
We developed a modified nonradioactive method for the detection of DNA. This method makes use of the polymerase chain reaction for preparation of probes; that is, a DNA fragment inserted in the polylinker region of an M13 or pUC vector is amplified with primers that have a modified cytosine tail at the 5' terminus (C-tailed primers). By this method, large amounts of labeled probes can be obtained easily. After hybridization, modified cytosine tails can be detected immunologically. DNA labeled by this method could be used in plaque hybridization. We could detect 0.05 pg of dot-blotted labeled DNA in 30 min with an enzyme-catalyzed chemiluminescence reaction.  相似文献   
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号