首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   918篇
  免费   44篇
  962篇
  2023年   3篇
  2021年   4篇
  2019年   7篇
  2018年   8篇
  2017年   14篇
  2016年   18篇
  2015年   20篇
  2014年   28篇
  2013年   70篇
  2012年   50篇
  2011年   45篇
  2010年   33篇
  2009年   38篇
  2008年   53篇
  2007年   58篇
  2006年   49篇
  2005年   58篇
  2004年   56篇
  2003年   65篇
  2002年   42篇
  2001年   15篇
  2000年   8篇
  1999年   8篇
  1998年   16篇
  1997年   12篇
  1996年   19篇
  1995年   5篇
  1994年   10篇
  1993年   16篇
  1992年   12篇
  1991年   11篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1970年   3篇
  1967年   2篇
排序方式: 共有962条查询结果,搜索用时 15 毫秒
91.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) catalyze similar enolase-type reactions. Both enzymes have a conserved non-catalytic Lys122 or Arg122 on the β-strand E lying in the interface between the N- and C-terminal domains. We used site-directed mutagenesis to analyze the function of Lys122 in the form II Rhodospirillum rubrum RuBisCO (RrRuBisCO) and Bacillus subtilis RLP (BsRLP). The K122R mutant of RrRuBisCO had a 40% decrease in kcat for carboxylase activity, a 2-fold increase in Km for CO2, and a 1.9-fold increase in Km for ribulose-1,5-bisphosphate. K122M and K122E mutants of RrRuBisCO were almost inactive. None of the substitutions affected the thermal stability of RrRuBisCO. The K122R mutant of BsRLP had a 32% decrease in kcat and lower thermal stability than the wild-type enzyme. The K122M and K122E mutants of BsRLP failed to form a catalytic dimer. Our results suggest that the lysine residue is essential for function in both enzymes, although in each case, its role is likely distinct.  相似文献   
92.
93.
Interleukin-1β (IL-1β) induces cell death in chondrocytes in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner. In this study, increased production of lactate was observed in IL-1β-treated mouse chondrocytic ATDC5 cells prior to the onset of their death. IL-1β-induced cell death in ATDC5 cells was suppressed by introducing an siRNA for monocarboxylate transporter-1 (MCT-1), a lactate transporter distributed in plasma and mitochondrial inner membranes. Mct-1 knockdown also prevented IL-1β-induced expression of phagocyte-type NADPH oxidase (NOX-2), an enzyme specialized for production of ROS, whereas it did not have an effect on inducible NO synthase. Suppression of IL-1β-induced cell death by Nox-2 siRNA indicated that NOX-2 is involved in cell death. Phosphorylation and degradation of inhibitor of κBα (IκBα) from 5 to 20 min after the addition of IL-1β was not affected by Mct-1 siRNA. In addition, IκBα was slightly decreased after 12 h of incubation with IL-1β, and the decrease was prominent after 36 h, whereas activation of p65/RelA was observed from 12 to 48 h after exposure to IL-1β. These changes were not seen in Mct-1-silenced cells. Forced expression of IκBα super repressor as well as treatment with the IκB kinase inhibitor BAY 11-7082 suppressed NOX-2 expression. Furthermore, Mct-1 siRNA lowered the level of ROS generated after 15-h exposure to IL-1β, whereas a ROS scavenger, N-acetylcysteine, suppressed both late phase degradation of IκBα and Nox-2 expression. These results suggest that MCT-1 contributes to NOX-2 expression via late phase activation of NF-κB in a ROS-dependent manner in ATDC5 cells exposed to IL-1β.  相似文献   
94.
IntroductionSeveral cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown.MethodsThis study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis.ResultsWe demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a.ConclusionIn keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells.  相似文献   
95.
The collagen type Ι alpha Ι (COL1A1) gene encodes the extracellular matrix component, collagen, and resides in candidate MYP5 for high myopia on the chromosome 17q22–q23.3. This locus has recently been implicated in playing an important role in the pathogenesis of experimental myopia. We investigated the association of disruptions of COL1A1 gene with high myopia by analyzing the frequency of ten SNPs in a Japanese population of 330 subjects with high myopia of −9.25 D or less and 330 randomized controls without high myopia. Two SNPs (rs2075555 and rs2269336) were significantly associated with high myopia (P < 0.05, Pc < 0.1). Two different haplotype blocks in COL1A1 were observed by the pair-wise linkage disequilibrium between the SNPs. The frequency of GGC/GGC diplotype constructed by the three SNPs (rs2075555, rs2269336, rs1107946) was significantly high (OR = 1.6) and associated with high myopia (P = 0.028, Pc< 0.084). Together our results provide the first evidence for COL1A1 as a gene associated with high myopia.  相似文献   
96.
Peroxiredoxins (Prxs) are thiol-dependent peroxidases that catalyze the detoxification of various peroxide substrates such as H2O2, peroxinitrite, and hydroperoxides, and control some signal transduction in eukaryotic cells. Prxs are found in all cellular organisms and represent an enormous superfamily. Recent genome sequencing projects and biochemical studies have identified a novel subfamily, the archaeal Prxs. Their primary sequences are similar to those of the 1-Cys Prxs, which use only one cysteine residue in catalysis, while their catalytic properties resemble those of the typical 2-Cys Prxs, which utilize two cysteine residues from adjacent monomers within a dimer in catalysis. We present here the X-ray crystal structure of an archaeal Prx from the aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1, determined at 2.3 A resolution (Rwork of 17.8% and Rfree of 23.0%). The overall subunit arrangement of the A.pernix archaeal Prx is a toroid-shaped pentamer of homodimers, or an (alpha2)5 decamer, as observed in the previously reported crystal structures of decameric Prxs. The basic folding topology and the peroxidatic active site structure are essentially the same as those of the 1-Cys Prx, hORF6, except that the C-terminal extension of the A.pernix archaeal Prx forms a unique helix with its flanking loops. The thiol group of the peroxidatic cysteine C50 is overoxidized to sulfonic acid. Notably, the resolving cysteine C213 forms the intra-monomer disulfide bond with the third cysteine, C207, which should be a unique structural characteristic in the many archaeal Prxs that retain two conserved cysteine residues in the C-terminal region. The conformational flexibility near the intra-monomer disulfide linkage might be necessary for the dramatic structural rearrangements that occur in the catalytic cycle.  相似文献   
97.
Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean–Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe–O2–P–C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10−6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10−3–10−1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2, suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.  相似文献   
98.
AimsInsulinoma-associated protein 2 (IA-2) is a member of the protein tyrosine phosphatase family that is localized on the insulin granule membrane. IA-2 is also well known as one of the major autoantigens in Type 1 diabetes mellitus. IA-2 gene deficient mice were recently established and showed abnormalities in insulin secretion. Thus, detailed localization of IA-2 was studied using wild-type and IA-2 gene deficient mice.Main methodsTo localize IA-2 expression in mouse neuroendocrine tissues, monoclonal antibodies were generated against IA-2 and western blot and immunohistochemical analyses were carried out in IA-2+/+ mice. IA-2?/? mice served as a negative control.Key findingsWestern blot analysis revealed that the 65 kDa form of IA-2 was observed in the cerebrum, cerebellum, medulla oblongata, pancreas, adrenal gland, pituitary gland, muscular layers of the stomach, small intestine, and colon. By immunohistochemical analysis, IA-2 was produced in endocrine cells in pancreatic islets, adrenal medullary cells, thyroid C-cells, Kulchitsky cells, and anterior, intermediate, and posterior pituitary cells. In addition, IA-2 was found in somatostatin-producing D-cells and other small populations of cells were scattered in the gastric corpus. IA-2 expression in neurites was confirmed by the immunostaining of IA-2 using primary cultured neurons from the small intestine and nerve growth factor (NGF)-differentiated PC12 cells.SignificanceThe IA-2 distribution in peripheral neurons appeared more intensely in neurites rather than in the cell bodies.  相似文献   
99.
100.
This paper reports the characterization of an alkaline phosphatase (AP) from an aerobic hyperthermophilic Archaeon Aeropyrum pernix K1. The native AP was purified into homogeneity. The enzyme is predicted as a homodimeric structure with a native molecular mass of about 75 kDa and monomer of about 40 kDa. Apparent optimum pH and temperature were estimated at 10.0 and above 95°C, respectively. Magnesium ion increased both the stability and the activity of the enzyme. A. pernix AP has been demonstrated as a very thermostable AP, retaining about 76% of its activity after being incubated at 90°C for 5.5 h and 67% of its activity after being incubated at 100°C for 2.5 h, respectively, under the presence of Mg(II). Enzyme activity was increased in addition of exogenous Mg(II), Ca(II), Zn(II), and Co(II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号