首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1553篇
  免费   69篇
  国内免费   1篇
  2021年   13篇
  2020年   6篇
  2019年   8篇
  2018年   16篇
  2017年   9篇
  2016年   20篇
  2015年   33篇
  2014年   41篇
  2013年   101篇
  2012年   82篇
  2011年   80篇
  2010年   43篇
  2009年   48篇
  2008年   84篇
  2007年   82篇
  2006年   78篇
  2005年   73篇
  2004年   76篇
  2003年   95篇
  2002年   67篇
  2001年   44篇
  2000年   32篇
  1999年   33篇
  1998年   21篇
  1997年   17篇
  1996年   24篇
  1995年   14篇
  1994年   23篇
  1993年   25篇
  1992年   38篇
  1991年   37篇
  1990年   26篇
  1989年   25篇
  1988年   21篇
  1987年   16篇
  1986年   22篇
  1985年   10篇
  1984年   15篇
  1983年   10篇
  1982年   11篇
  1981年   14篇
  1980年   12篇
  1979年   18篇
  1978年   7篇
  1977年   13篇
  1976年   10篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1970年   3篇
排序方式: 共有1623条查询结果,搜索用时 31 毫秒
991.
Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.  相似文献   
992.
993.
994.
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.  相似文献   
995.
Several indole esters were tested as inhibitors of tyrosine kinase p60c-Src. Compound (4) was found fairly active against the enzyme with IC50=1.34?μM. DOCK methodology was used to asses our inhibitors for their inhibitory potency against tyrosine kinase. The docking results showed that compounds (4), (25) and (26) were bound to the active site of the enzyme Lys 295 of p60c-Src tyrosine kinase. Both activity and docking studies showed a parallel result, with compound (4) having a better interaction with the enzyme active site and also greater activity than the other compounds, indicating a potential role as new lead inhibitor.  相似文献   
996.

Background

We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2) in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR) through a mechanism relevant to the increased mitochondrial Ca2+ levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca2+ levels in cultured murine neocortical neurons.

Methodology/Principal Findings

In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca2+ levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca2+ levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca2+ levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca2+ levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca2+ levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM.

Conclusions/Significance

Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca2+ incorporation and cell death after NMDAR activation in neurons.  相似文献   
997.
Serum uric acid (SUA) levels are associated with metabolic syndrome (MetS) and its components such as glucose intolerance and type 2 diabetes. It is unknown whether there are gender-specific differences regarding the relationship between SUA levels, impaired fasting glucose (IFG) and newly detected diabetes. We recruited 1,209 men aged 60±15 (range, 19–89) years and 1,636 women aged 63±12 (range, 19–89) years during their annual health examination from a single community. We investigated the association between SUA levels and six categories according to fasting plasma glucose (FPG) level {normal fasting glucose (NFG), <100 mg/dL; high NFG-WHO, 100 to 109 mg/dL; IFG-WHO, 110 to 125 mg/dL; IFG-ADA, 100 to 125 mg/dL; newly detected diabetes, ≥126 mg/dL; known diabetes} SUA levels were more strongly associated with the different FPG categories in women compared with men. In women, the associations remained significant for IFG-WHO (OR, 1.23, 95% CI, 1.00–1.50) and newly detected diabetes (OR, 1.33, 95% CI, 1.03–1.72) following multivariate adjustment. However, in men all the associations were not significant. Thus, there was a significant interaction between gender and SUA level for newly detected diabetes (P = 0.005). SUA levels are associated with different categories of impaired fasting glucose in participants from community-dwelling persons, particularly in women.  相似文献   
998.

Introduction

Autoantibodies to ribonucleoprotein are associated with a variety of autoimmune diseases, including rheumatoid arthritis (RA). Many studies on associations between human leukocyte antigen (HLA) alleles and RA have been reported, but few have been validated in RA subpopulations with anti-La/SS-B or anti-Ro/SS-A antibodies. Here, we investigated associations of HLA class II alleles with the presence of anti-Ro/SS-A or anti-La/SS-B antibodies in RA.

Methods

An association study was conducted for HLA-DRB1, DQB1, and DPB1 in Japanese RA and systemic lupus erythematosus (SLE) patients that were positive or negative for anti-Ro/SS-A and/or anti-La/SS-B antibodies.

Results

An increased prevalence of certain class II alleles was associated with the presence of anti-Ro/SS-A antibodies as follows: DRB1*08∶03 (Pc = 3.79×10−5, odds ratio [OR] 3.06, 95% confidence interval [CI] 1.98–4.73), DQB1*06∶01 (Pc = 0.0106, OR 1.70, 95%CI 1.26–2.31), and DPB1*05∶01 (Pc = 0.0040, OR 1.55, 95%CI 1.23–1.96). On the other hand, DRB1*15∶01 (Pc = 0.0470, OR 3.14, 95%CI 1.63–6.05), DQB1*06∶02 (Pc = 0.0252, OR 3.14, 95%CI 1.63–6.05), and DPB1*05∶01 (Pc = 0.0069, OR 2.27, 95% CI 1.44–3.57) were associated with anti-La/SS-B antibodies. The DPB1*05∶01 allele was associated with anti-Ro/SS-A (Pc = 0.0408, OR 1.69, 95% CI 1.19–2.41) and anti-La/SS-B antibodies (Pc = 2.48×10−5, OR 3.31, 95%CI 2.02–5.43) in SLE patients.

Conclusion

HLA-DPB1*05∶01 was the only allele associated with the presence of both anti-Ro/SS-A and anti-La/SS-B antibodies in Japanese RA and SLE patients.  相似文献   
999.
mTOR complex 2 (mTORC2) signaling is upregulated in multiple types of human cancer, but the molecular mechanisms underlying its activation and regulation remain elusive. Here, we show that microRNA-mediated upregulation of Rictor, an mTORC2-specific component, contributes to tumor progression. Rictor is upregulated via the repression of the miR-424/503 cluster in human prostate and colon cancer cell lines that harbor c-Src upregulation and in Src-transformed cells. The tumorigenicity and invasive activity of these cells were suppressed by re-expression of miR-424/503. Rictor upregulation promotes formation of mTORC2 and induces activation of mTORC2, resulting in promotion of tumor growth and invasion. Furthermore, downregulation of miR-424/503 is associated with Rictor upregulation in colon cancer tissues. These findings suggest that the miR-424/503–Rictor pathway plays a crucial role in tumor progression.  相似文献   
1000.
Highlights? iPSCs generated from T cells specific for the MART-1 melanoma epitope ? Differentiation of iPSCs into T cells with a MART-1 specific T cell receptor ? MART-1-based stimulation of T cells demonstrates retained antigen specificity  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号