首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   56篇
  467篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   22篇
  2012年   32篇
  2011年   37篇
  2010年   20篇
  2009年   12篇
  2008年   27篇
  2007年   23篇
  2006年   27篇
  2005年   28篇
  2004年   32篇
  2003年   25篇
  2002年   27篇
  2001年   8篇
  2000年   5篇
  1999年   14篇
  1998年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   12篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   6篇
  1978年   3篇
  1974年   3篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
81.
The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.  相似文献   
82.
Irreversible aggregation limits bioavailability and therapeutic activity of protein-based drugs. Here we show that an aggregation-resistant mutant can be engineered by structural homology with a non-amyloidogenic analogue and that the aggregation-resistant variant may act as an inhibitor. This strategy has successfully been applied to the amyloidogenic human calcitonin (hCT). Including only five residues from the non-amyloidogenic salmon calcitonin (sCT), we obtained a variant, polar human calcitonin (phCT), whose solution structure was shown by CD, NMR, and calculations to be practically identical to that of sCT. phCT was also observed to be a potent amyloidogenesis inhibitor of hCT when mixed with it in a 1:1 ratio. Fibrillation studies of phCT and the phCT-hCT mixture mimicked the sCT behavior in the kinetics and shapes of the fibrils with a dramatic reduction with respect to hCT. Finally, the effect of phCT alone and of the mixture on the intracellular cAMP level in T47D cells confirmed for the mutant and the mixture their calcitonin-like activity, exhibiting stimulation effects identical to those of sCT, the current therapeutic form. The strategy followed appears to be suitable to develop new forms of hCT with a striking reduction of aggregation and improved activity. Finally, the inhibitory properties of the aggregation-resistant analogue, if confirmed for other amyloidogenic peptides, may favor a new strategy for controlling fibril formation in a variety of human diseases.  相似文献   
83.
Here we report on novel quinoxalines as highly potent and selective inhibitors of the type III receptor tyrosine kinases PDGFR, FLT3, and KIT. These compounds, tricyclic quinoxalines, were generated in order to improve bioavailability over the highly hydrophobic bicyclic quinoxalines. Four of the highly active compounds were characterized in detail and are shown to inhibit PDGFR kinase activity of the isolated receptor as well as in intact cells in the sub-micromolar concentration range. We show that the most active inhibitor (compound 13, AGL 2043) is approximately 15-20 times more potent than its isomer (compound 14, AGL 2044). We therefore compared the three dimensional structures of the two compounds by X-ray crystallography. These compounds are also highly effective in blocking the kinase activity of FLT3, KIT, and the oncogenic protein Tel-PDGFR in intact cells. These compounds are potent inhibitors of the proliferation of pig heart smooth muscle cells. They fully arrest the growth of these cells and the effect is fully reversible. The chemical, biochemical and cellular properties of these compounds as well as the solubility properties make them suitable for development as anti-restenosis and anti-cancer agents.  相似文献   
84.
Animals explore novel environments in a cautious manner, exhibiting alternation between curiosity-driven behavior and retreats. We present a detailed formal framework for exploration behavior, which generates behavior that maintains a constant level of novelty. Similar to other types of complex behaviors, the resulting exploratory behavior is composed of exploration motor primitives. These primitives can be learned during a developmental period, wherein the agent experiences repeated interactions with environments that share common traits, thus allowing transference of motor learning to novel environments. The emergence of exploration motor primitives is the result of reinforcement learning in which information gain serves as intrinsic reward. Furthermore, actors and critics are local and ego-centric, thus enabling transference to other environments. Novelty control, i.e. the principle which governs the maintenance of constant novelty, is implemented by a central action-selection mechanism, which switches between the emergent exploration primitives and a retreat policy, based on the currently-experienced novelty. The framework has only a few parameters, wherein time-scales, learning rates and thresholds are adaptive, and can thus be easily applied to many scenarios. We implement it by modeling the rodent’s whisking system and show that it can explain characteristic observed behaviors. A detailed discussion of the framework’s merits and flaws, as compared to other related models, concludes the paper.  相似文献   
85.
Mutations in the SO42−/Cl/OH exchanger Slc26a2 cause the disease diastrophic dysplasia (DTD), resulting in aberrant bone development and, therefore, skeletal deformities. DTD is commonly attributed to a lack of chondrocyte SO42− uptake and proteoglycan sulfation. However, the skeletal phenotype of patients with DTD is typified by reduction in cartilage and osteoporosis of the long bones. Chondrocytes of patients with DTD are irregular in size and have a reduced capacity for proliferation and terminal differentiation. This raises the possibility of additional roles for Slc26a2 in chondrocyte function. Here, we examined the roles of Slc26a2 in chondrocyte biology using two distinct systems: mouse progenitor mesenchymal cells differentiated to chondrocytes and freshly isolated mouse articular chondrocytes differentiated into hypertrophic chondrocytes. Slc26a2 expression was manipulated acutely by delivery of Slc26a2 or shSlc26a2 with lentiviral vectors. We demonstrate that slc26a2 is essential for chondrocyte proliferation and differentiation and for proteoglycan synthesis. Slc26a2 also regulates the terminal stage of chondrocyte cell size expansion. These findings reveal multiple roles for Slc26a2 in chondrocyte biology and emphasize the importance of Slc26a2-mediated protein sulfation in cell signaling, which may account for the complex phenotype of DTD.  相似文献   
86.
Odor presentation generates both fast oscillations and slow patterning in the spiking activity of the projection neurons (PNs) in the antennal lobe (AL) of locusts, moths and bees. Experimental results indicate that the oscillations are the result of the interaction between the PNs and the inhibitory local neurons (LNs) in the AL; e.g., blocking inhibition by application of GABA-receptor antagonists abolishes these oscillations. The slow patterning, on the other hand, was shown to be somewhat resistant to such blockage. In a H-H model, we reproduce both the oscillations and the slow patterning. As previously suggested, the oscillations are the result of the interaction between the PNs and LNs. We suggest that calcium and calcium-dependent potassium channels (found in PNs of bees and moths) are sufficient to account for the slow patterning resistant to the application of GABA-receptor antagonists. The intrinsic bursting property of the PNs, resulting from these additional modeled currents, give rise to another network feature that was seen experimentally in locusts: A relatively small increase in the number of additional generated PN action potentials when LN input is blocked. Consequently, the major effect of network inhibition is to redistribute the action potentials of the PNs from bursting to one action potential per cycle of the oscillations. Action Editor: Christiane Linster  相似文献   
87.
The phenomenon of cold scission or cold lability, which entails a widespread variety of oligomeric enzymes, is still enigmatic. The effect of cooling on the activity and the quaternary structure of the pyridoxal 5'-phosphate (PLP)-dependent enzyme, tryptophanase (Tnase), was studied utilizing single photon counting time-resolved spectrofluorometry. Upon cooling of holo-wild-type (wt) Tnase and its W330F mutant from 25 degrees C to 2 degrees C, a reduction in PLP fluorescence lifetime and rotational correlation time as well as inactivation and dissociation from tetramers to dimers were observed for both enzymes. Fluorescence anisotropy invariably decreased as a consequence of cooling, whether it was accompanied by a slight decrease in activity without significant dissociation, or by a substantial decrease in activity that was associated with either a partial or major dissociation. These results support the suggested conformational change that precedes the PLP-aldimine bond scission. It is proposed that cold inactivation is initiated by the weakening of hydrophobic interactions, leading to conformational changes which are the driving force for the aldimine bond cleavage.  相似文献   
88.
Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error‐free DNA molecules and their libraries from error‐prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem‐solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error‐prone oligonucleotides are recursively combined in vitro, forming error‐prone DNA molecules; error‐free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error‐free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.  相似文献   
89.
The Tat protein of equine infectious anemia virus (EIAV) was synthesized in Escherichia coli using the inducible expression plasmid, pET16b, which contains a His.Tag leader, thus allowing for rapid and efficient enrichment of the histidine-tagged protein by metal affinity chromatography. Yields of up to 20 mg of Tat were obtained from 1011 bacterial cells. The recombinant Tat protein was shown to potently trans-activate the EIAV long terminal repeat (LTR) following its introduction into canine cells by ‘scrape loading’. The EIAV Tat protein was found to localize predominantly within the cytoplasm, in contrast to HIV-1 Tat. The availability of large amounts of purified functional EIAV Tat protein should greatly facilitate detailed structure-function analyses.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号