首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   56篇
  467篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   10篇
  2013年   22篇
  2012年   32篇
  2011年   37篇
  2010年   20篇
  2009年   12篇
  2008年   27篇
  2007年   23篇
  2006年   27篇
  2005年   28篇
  2004年   32篇
  2003年   25篇
  2002年   27篇
  2001年   8篇
  2000年   5篇
  1999年   14篇
  1998年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   12篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   6篇
  1978年   3篇
  1974年   3篇
  1972年   2篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
101.
Quinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as in cellular models of Alzheimer's disease and related disorders. Furthermore, intrastriatal inoculation of mice with QA results in increased levels of phosphorylated α-synuclein and neurodegenerative pathological and behavioral characteristics. However, the cellular and molecular mechanisms underlying the involvement of QA accumulation in protein aggregation and neurodegeneration remain elusive. We recently established that self-assembled ordered structures are formed by various metabolites and hypothesized that these “metabolite amyloids” may seed amyloidogenic proteins. Here we demonstrate the formation of QA amyloid-like fibrillar assemblies and seeding of α-synuclein aggregation by these nanostructures both in vitro and in cell culture. Notably, α-synuclein aggregation kinetics was accelerated by an order of magnitude. Additional amyloid-like properties of QA assemblies were demonstrated using thioflavin T assay, powder X-ray diffraction and cell apoptosis analysis. Moreover, fluorescently labeled QA assemblies were internalized by neuronal cells and co-localized with α-synuclein aggregates. In addition, we observed cell-to-cell propagation of fluorescently labeled QA assemblies in a co-culture of treated and untreated cells. Our findings suggest that excess QA levels, due to mutations in the kynurenine pathway, for example, may lead to the formation of metabolite assemblies that seed α-synuclein aggregation, resulting in neuronal toxicity and induction of Parkinson's disease.  相似文献   
102.
103.
Neurons in the visual cortex are typically selective to a number of stimulus dimensions. Thus, there is a basic ambiguity in relating the response level of a single neuron to the stimulus values. It is shown that a multi-dimensional stimulus may be coded reliably by an ensemble of neurons, using a weighted average population coding model. Each neurons' contribution to the population signal for each dimension is the product of its response magnitude and its preferred value for that dimension. The sum of the products was normalized by the sum of the ensemble responses. Simulation results show that the representation accuracy increases as the square root of the number of units irrespective of the number of dimensions. Comparison of a specific 2D case of this population code for orientation and spatial frequency to behavioral discrimination levels yields that 103–104 neurons are needed to reach psychophysical performance. Introduction of each additional dimension requires about 1.7 times the number of neurons in the ensemble to reach the same level of accuracy. This result suggests that neurons may be selective for only 3 to 5 dimensions. It also provides another rationale for the existence of parallel processing streams in vision.  相似文献   
104.
The absorption of intact, biologically active insulin from the ileum, or the ascending colon was measured by the resulting changes in blood glucose concentration. One hour after injection of the ascending colon with a 1 ml volume containing 12 u insulin and 2 mg DOC the blood glucose level was reduced to 50% of the initial value, i.e. 31±2.0 mg%.When insulin was injected directly into the lumen of the ileum, the addition of 3 mg soybean trypsin inhibitor boosted the insulin effect. Direct injection of the ileum with 12 u insulin and 3 mg soybean trypsin inhibitor resulted in a significant drop in blood glucose: 69±5.0 and 85±8.1% of the initial concentration, following 1 and 2 hours, respectively.In the presence of soybean trypsin inhibitor, it was found that the endogenous bile salts in the ileum aid in the absorption of biologically active insulin.  相似文献   
105.
Amyloid formation is associated with several human diseases including Alzheimer's disease (AD), Parkinson's disease, Type 2 Diabetes, and so forth, no disease modifying therapeutics are available for them. Because of the structural similarities between the amyloid species characterizing these diseases, (despite the lack of amino acid homology) it is believed that there might be a common mechanism of toxicity for these conditions. Thus, inhibition of amyloid formation could be a promising disease-modifying therapeutic strategy for them. Aromatic residues have been identified as crucial in formation and stabilization of amyloid structures. This finding was corroborated by high-resolution structural studies, theoretical analysis, and molecular dynamics simulations. Amongst the aromatic entities, tryptophan was found to possess the most amyloidogenic potential. We therefore postulate that targeting aromatic recognition interfaces by tryptophan could be a useful approach for inhibiting the formation of amyloids. Quinones are known as inhibitors of cellular metabolic pathways, to have anti- cancer, anti-viral and anti-bacterial properties and were shown to inhibit aggregation of several amyloidogenic proteins in vitro. We have previously described two quinone-tryptophan hybrids which are capable of inhibiting amyloid-beta, the protein associated with AD pathology, both in vitro and in vivo. Here we tested their generic properties and their ability to inhibit other amyloidogenic proteins including α-synuclein, islet amyloid polypeptide, lysozyme, calcitonin, and insulin. Both compounds showed efficient inhibition of all five proteins examined both by ThT fluorescence analysis and by electron microscope imaging. If verified in vivo, these small molecules could serve as leads for developing generic anti-amyloid drugs.  相似文献   
106.
Orlov T  Makin TR  Zohary E 《Neuron》2010,68(3):586-600
Large-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants. Using converging methods, the preference for specific body parts was demonstrated to be robust and did not merely reflect shape differences between the categories. Finally, execution of (unseen) movements with different body parts resulted in a limited topographic representation of the limbs and trunk, which partially overlapped with the visual body part map. This motor-driven activation in the OTC could not be explained solely by visual or motor imagery of the body parts. This suggests that visual and motor-related information converge within the OTC in a body part specific manner.  相似文献   
107.
Human CD56(bright) NK cells accumulate in the maternal decidua during pregnancy and are found in direct contact with fetal trophoblasts. Several mechanisms have been proposed to explain the inability of NK cells to kill the semiallogeneic fetal cells. However, the actual functions of decidual NK (dNK) cells during pregnancy are mostly unknown. Here we show that dNK cells, but not peripheral blood-derived NK subsets, regulate trophoblast invasion both in vitro and in vivo by production of the interleukin-8 and interferon-inducible protein-10 chemokines. Furthermore, dNK cells are potent secretors of an array of angiogenic factors and induce vascular growth in the decidua. Notably, such functions are regulated by specific interactions between dNK-activating and dNK-inhibitory receptors and their ligands, uniquely expressed at the fetal-maternal interface. The overall results support a 'peaceful' model for reproductive immunology, in which elements of innate immunity have been incorporated in a constructive manner to support reproductive tissue development.  相似文献   
108.
109.
Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well-studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10-fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral-encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico-chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate-critical environments.  相似文献   
110.
Rats use their large facial hairs (whiskers) to detect, localize and identify objects in their proximal three-dimensional (3D) space. Here, we focus on recent evidence of how object location is encoded in the neural sensory pathways of the rat whisker system. Behavioral and neuronal observations have recently converged to the point where object location in 3D appears to be encoded by an efficient orthogonal scheme supported by primary sensory-afferents: each primary-afferent can signal object location by a spatial (labeled-line) code for the vertical axis (along whisker arcs), a temporal code for the horizontal axis (along whisker rows), and an intensity code for the radial axis (from the face out). Neuronal evidence shows that (i) the identities of activated sensory neurons convey information about the vertical coordinate of an object, (ii) the timing of their firing, in relation to other reference signals, conveys information about the horizontal object coordinate, and (iii) the intensity of firing conveys information about the radial object coordinate. Such a triple-coding scheme allows for efficient multiplexing of 3D object location information in the activity of single neurons. Also, this scheme provides redundancy since the same information may be represented in the activity of many neurons. These features of orthogonal coding increase accuracy and reliability. We propose that the multiplexed information is conveyed in parallel to different readout circuits, each decoding a specific spatial variable. Such decoding reduces ambiguity, and simplifies the required decoding algorithms, since different readout circuits can be optimized for a particular variable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号