首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
21.
Late expression factor 4 (LEF4) is one of the four subunits of Autographa californica nuclear polyhedrosis virus (AcNPV) RNA polymerase. LEF4 was overexpressed in Escherichia coli and recombinant protein was subjected to structural characterization. Chemical induced unfolding of LEF4 was investigated using intrinsic fluorescence, hydrophobic dye binding, fluorescence quenching, and circular dichroism (CD) techniques. The unfolding of LEF4 was found to be a non‐two state, biphasic transition. Intermediate states of LEF4 at 2M GnHCl and 4M urea shared some common structural features and hence may lie on the same pathway of protein folding. Steady‐state fluorescence and far‐UV CD showed that while there was considerable shift in the wavelength of emission maximum (λmax), the secondary structure of LEF4 intermediates at 2M GnHCl and 4M urea remained intact. Further, temperature induced denaturation of LEF4 was monitored using far‐UV CD. This study points to the structural stability of LEF4 under the influence of denaturants like urea and temperature. Although LEF4 is an interesting model protein to study protein folding intermediates, in terms of functional significance the robust nature of this protein might reflect one of the several strategies adapted by the virus to survive under very adverse environmental and physiological conditions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 574–582, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
22.
Neph1 is present in podocytes, where it plays a critical role in maintaining the filtration function of the glomerulus, in part through signaling events mediated by its cytoplasmic domain that are involved in actin cytoskeleton organization. To understand the function of this protein, a detailed knowledge of the structure of the Neph1 cytoplasmic domain (Neph1-CD) is required. In this study, the solution structure of this domain was determined by small/wide angle x-ray scattering (SWAXS). Analysis of Neph1-CD by SWAXS suggested that this protein adopts a global shape with a radius of gyration and a maximum linear dimension of 21.3 and 70 Å, respectively. These parameters and the data from circular dichroism experiments were used to construct a structural model of this protein. The His-ZO-1-PDZ1 (first PDZ domain of zonula occludens) domain that binds Neph1-CD was also analyzed by SWAXS, to confirm that it adopts a global structure similar to its crystal structure. We used the SWAXS intensity profile, the structural model of Neph1-CD, and the crystal structure of ZO-1-PDZ1 to construct a structural model of the Neph1-CD·ZO-1-PDZ1 complex. Mapping of the intermolecular interactions suggested that in addition to the C-terminal residues Thr-His-Val, residues Lys-761 and Tyr-762 in Neph1 are also critical for stabilizing the complex. Estimated intensity values from the SWAXS data and in vivo and in vitro pull-down experiments demonstrated loss of binding to ZO-1 when these residues were individually mutated to alanines. Our findings present a structural model that provides novel insights into the molecular structure and function of Neph1-CD.  相似文献   
23.
We earlier documented the structural and functional characterization of PeIF5B factor from Pisum sativum that shows strong homology to the universal translation initiation factor eIF5B (Rasheedi et al., 2007, 2010 [12] and [13]). We now show that PeIF5B is an unusually thermo-stable protein resisting temperatures up to 95 °C. PeIF5B prevents thermal aggregation of heat labile proteins, such as citrate synthase (CS) and NdeI, under heat stress or chemical denaturation conditions and promotes their functional folding. It also prevents the aggregation of DTT induced insulin reduction. GTP appears to stimulate PeIF5B-mediated chaperone activity. In-vivo, PeIF5B over expression significantly enhances, the viability of Escherichia coli cells after heat stress (50 °C). These observations lead us to conclude that PeIF5B, in addition to its role in protein translation, has chaperone like activity and could be likely involved in protein folding and protection from stress.  相似文献   
24.
25.
Glomerular injury is often characterized by the effacement of podocytes, loss of slit diaphragms, and proteinuria. Renal ischemia or the loss of blood flow to the kidneys has been widely associated with tubular and endothelial injury but rarely has been shown to induce podocyte damage and disruption of the slit diaphragm. In this study, we have used an in vivo rat ischemic model to demonstrate that renal ischemia induces podocyte effacement with loss of slit diaphragm and proteinuria. Biochemical analysis of the ischemic glomerulus shows that ischemia induces rapid loss of interaction between slit diaphragm junctional proteins Neph1 and ZO-1. To further understand the effect of ischemia on molecular interactions between slit diaphragm proteins, a cell culture model was employed to study the binding between Neph1 and ZO-1. Under physiologic conditions, Neph1 co-localized with ZO-1 at cell-cell contacts in cultured human podocytes. Induction of injury by ATP depletion resulted in rapid loss of Neph1 and ZO-1 binding and redistribution of Neph1 and ZO-1 proteins from cell membrane to the cytoplasm. Recovery resulted in increased Neph1 tyrosine phosphorylation, restoring Neph1 and ZO-1 binding and their localization at the cell membrane. We further demonstrate that tyrosine phosphorylation of Neph1 mediated by Fyn results in significantly increased Neph1 and ZO-1 binding, suggesting a critical role for Neph1 tyrosine phosphorylation in reorganizing the Neph1-ZO-1 complex. This study documents that renal ischemia induces dynamic changes in the molecular interactions between slit diaphragm proteins, leading to podocyte damage and proteinuria.  相似文献   
26.
A novel ATP-dependent nuclear DNA unwinding enzyme from pea has been purified to apparent homogeneity and characterized. This enzyme is present at extremely low abundance and has the highest specific activity among plant helicases. It is a heterodimer of 54 and 66 kDa polypeptides as determined by SDS/PAGE. On gel filtration chromatography and glycerol gradient centrifugation it gives a native molecular mass of 120 kDa and is named as pea DNA helicase 120 (PDH120). The enzyme can unwind 17-bp partial duplex substrates with equal efficiency whether or not they contain a fork. It translocates unidirectionally along the bound strand in the 3'-->5' direction. The enzyme also exhibits intrinsic single-stranded DNA- and Mg2+-dependent ATPase activity. ATP is the most favoured cofactor but other NTPs and dNTPs can also support the helicase activity with lower efficiency (ATP > GTP = dCTP > UTP > dTTP > CTP > dATP > dGTP) for which divalent cation (Mg2+ > Mn2+) is required. The DNA intercalating agents actinomycin C1, ethidium bromide, daunorubicin and nogalamycin inhibit the DNA unwinding activity of PDH120 with Ki values of 5.6, 5.2, 4.0 and 0.71 micro Ms, respectively. This inhibition might be due to the intercalation of the inhibitors into duplex DNA, which results in the formation of DNA-inhibitor complexes that impede the translocation of PDH120. Isolation of this new DNA helicase should make an important contribution to our better understanding of DNA transaction in plants.  相似文献   
27.

Background

Many of the PE/PPE proteins are either surface localized or secreted outside and are thought to be a source of antigenic variation in the host. The exact role of these proteins are still elusive. We previously reported that the PPE41 protein induces high B cell response in TB patients. The PE/PPE genes are not randomly distributed in the genome but are organized as operons and the operon containing PE25 and PPE41 genes co-transcribe and their products interact with each other.

Methodology/Principal Finding

We now describe the antigenic properties of the PE25, PPE41 and PE25/PPE41 protein complex coded by a single operon. The PPE41 and PE25/PPE41 protein complex induces significant (p<0.0001) B cell response in sera derived from TB patients and in mouse model as compared to the PE25 protein. Further, mice immunized with the PE25/PPE41 complex and PPE41 proteins showed significant (p<0.00001) proliferation of splenocyte as compared to the mice immunized with the PE25 protein and saline. Flow cytometric analysis showed 15–22% enhancement of CD8+ and CD4+ T cell populations when immunized with the PPE41 or PE25/PPE41 complex as compared to a marginal increase (8–10%) in the mice immunized with the PE25 protein. The PPE41 and PE25/PPE41 complex can also induce higher levels of IFN-γ, TNF-α and IL-2 cytokines.

Conclusion

While this study documents the differential immunological response to the complex of PE and PPE vis-à-vis the individual proteins, it also highlights their potential as a candidate vaccine against tuberculosis.  相似文献   
28.
29.
30.
The resistin gene is a potential candidate for the etiology of insulin resistance and type 2 diabetes and has been implicated as the molecular link between type 2 diabetes and obesity. Unlike the mouse resistin, expression of the human resistin appears to be regulated differently. We report comparative analyses of the mouse and human genomic fragments encoding the resistin gene. At the amino acid level the two proteins exhibit 59% identity. While at the mRNA level the human resistin shows 64.4% sequence identity with its mouse counterpart, the mouse resistin genomic sequence displays only 46.7% sequence identity with the human resistin and is almost three times bigger than the human resistin. The intronic sequences per se displayed the least identities (28.7%), however the intron boundaries were highly conserved between human and mouse. The mouse resistin carries a very large intron in the 3' UTR, which has a number of regulatory sequences possibly involved in differential gene expression. Of particular significance is the presence of a PPAR/RXR heterodimer binding site within intron X (IntX-PPRE) which may possibly confer TZD responsiveness. Oligonucleotides carrying the authentic PPAR/RXR binding element (Aco-PPRE) as well as IntX-PPRE specifically bound factors (PPAR/RXR heterodimers) present in differentiated 3T3-L1 adipocyte cells in an electrophoretic mobility shift assay. IntX-PPRE oligonucleotide modulated the expression of the luciferase reporter gene in transient transfection assays using 3T3-L1 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号