首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   22篇
  国内免费   2篇
  2023年   6篇
  2022年   24篇
  2021年   35篇
  2020年   31篇
  2019年   57篇
  2018年   25篇
  2017年   19篇
  2016年   23篇
  2015年   24篇
  2014年   35篇
  2013年   42篇
  2012年   28篇
  2011年   28篇
  2010年   11篇
  2009年   10篇
  2008年   12篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1988年   1篇
  1975年   1篇
排序方式: 共有443条查询结果,搜索用时 43 毫秒
71.
Background aimsThe aim was to investigate the therapeutic effect of granulocyte–colony-stimulating factor (G-CSF) administration following implantation of autologous bone marrow mononuclear cells (BM MNC) for patients with lower limb ischemia.MethodsThe design was a randomized controlled trial. Fifteen patients with severe chronic limb ischemia were treated with autologous BM MNC [without G-CSF (MNC–G-CSF) or combined with G-CSF administration for 5 days following transplantation (MNC+G-CSF)].ResultsAll clinical parameters, including ankle brachial index, visual analog scale and pain-free walking distance, showed a mean improvement from baseline, which was measured at 4 and 24 weeks after transplantation in both groups. However, in three (20%) patients, the clinical course did not improve and limb salvage was not achieved. No significant difference was observed among the patients treated in the MNC–G-CSF and MNC+G-CSF groups. No severe adverse reactions were reported during the study period. No relationship was observed between both the numbers of viable MNC or CD34+ cells and the clinical outcome.ConclusionsAutologous transplantation of BM MNC into ischemic lower limbs is safe, feasible and efficient for patients with severe peripheral artery disease. However, the administration of G-CSF following cell transplantation does not improve the effect of BM MNC implantation and therefore would not have any beneficial value in clinical applications of such cases.  相似文献   
72.
A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-l-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.  相似文献   
73.
74.
Studies using various MRI techniques have shown that a water-protein concentration gradient exists in the ocular lens. Because this concentration is higher in the core relative to the lens periphery, a gradient in refractive index is established in the lens. To investigate how the water-protein concentration profile is maintained, bovine lenses were incubated in different solutions, and changes in water-protein concentration ratio monitored using proton density weighted (PD-weighted) imaging in the absence and presence of heavy water (D(2)O). Lenses incubated in artificial aqueous humor (AAH) maintained the steady state water-protein concentration gradient, but incubating lenses in high extracellular potassium (KCl-AAH) or low temperature (Low T-AAH) caused a collapse of the gradient due to a rise in water content in the core of the lens. To visualize water fluxes, lenses were incubated in D(2)O, which acts as a contrast agent. Incubation in KCl-AAH and low T-AAH dramatically slowed the movement of D(2)O into the core but did not affect the movement of D(2)O into the outer cortex. D(2)O seemed to preferentially enter the lens cortex at the anterior and posterior poles before moving circumferentially toward the equatorial regions. This directionality of D(2)O influx into the lens cortex was abolished by incubating lenses in high KCl-AAH or low T-AAH, and resulted in homogenous influx of D(2)O into the outer cortex. Taken together, our results show that the water-protein concentration ratio is actively maintained in the core of the lens and that water fluxes preferentially enter the lens at the poles.  相似文献   
75.
With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R(2) = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R(2) = 0.99) and lateral (R(2) = 0.83 to 0.99) surface, as well as at the peak stress point (R(2) = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.  相似文献   
76.
Additive effects of Na+ and Cl- ions on barley growth under salinity stress   总被引:3,自引:0,他引:3  
Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.  相似文献   
77.
The purpose of this study was to identify genomic regions, quantitative trait loci (QTL), affecting carcass traits on chromosome 1 in an F2 population of Japanese quail. For this purpose, two white and wild strains of Japanese quail (16 birds) were crossed reciprocally and F1 generation (34 birds) was created. The F2 generation was produced by intercrossing of the F1 birds. Phenotypic data including carcass weight, internal organs and carcass parts were collected on F2 animals (422 birds). The total mapping population (472 birds) was genotyped for 8 microsatellite markers on chromosome 1. QTL analysis was performed with interval mapping method applying the line-cross model. Significant QTL were identified for breast weight at 0 (P < 0.01), 172 (P < 0.05) and 206 (P < 0.01), carcass weight at 91 (P < 0.05), carcass fatness at 0 (P < 0.01), pre-stomach weight at 206 (P < 0.01) and uropygial weight gland at 197 (P < 0.01) cM on chromosome 1. There was also evidence for imprinted QTL affecting breast weight (P < 0.01) on chromosome 1. The proportion of the F2 phenotypic variation explained by the significant additive, dominance and imprinted QTL effects ranged from 1.0 to 7.3 %, 1.2 to 3.3 % and 1.4 to 2.2 %, respectively.  相似文献   
78.
Wheat is a vital dietary component for human health and widely consumed in the world. Wheat rusts are dangerous pathogens and contribute serious threat to its production. In present study, PCR-Based DNA Markers were employed to check the rust resistance genes among 20 wheat genotypes and 22 markers were amplified. NTSYS-pc 2.2 was used to calculate genetic diversity and Nei and Li''s coefficients ranged from 0.55 to 0.95. Cluster analysis was obtained using UPGMA (Unweighted Pair Group Method of Arithmetic Average) algorithm. Maximum no. of genes (23) was amplified from TW-760010 genotype whereas minimum no of genes (14) were amplified from TW-76005 genotype. The data gained from present study open up new ways to produce new varieties by breeding rust resistant germplasm to avoid the economic and food loss and varieties with improved characteristics.  相似文献   
79.
Management controversies arise when both of the prey and predator in an ecosystem are species of conservation concern. We investigated trophic interactions between the endangered Persian leopard (Panthera pardus saxicolor) and a declining mountain ungulate, urial wild sheep (Ovis vignei), on a high-altitude steppe of Iran. During two consecutive photo-trapping seasons of 1,300 nights in total, a minimum population of four adult leopards (one female and three males) was documented. Scat analysis indicated that urial wild sheep was the staple of the leopard diet with 48.44 % of total biomass consumed. Remains of domestic livestock in leopard scats were negligible yet alarming (14.53 % biomass consumed), followed by wild pigs (8.13 %) and wild goat (1.26 %). Financial costs of leopard depredation to livestock breeders during our study period were comparatively lower than livestock–leopard conflict hotspots across Iran. Using distance sampling, urial density was 15.8 individuals km?2 (±SE 6.2), and a total biomass of 47,621.5 kg for wild ungulates in the study area was estimated. We estimated that the annual removal rate of urial by leopards during our study period was 9.4 % of the total urial population. We suggest that continuous monitoring of the leopard and prey populations to assess predation impact should be considered, particularly in areas where a single species comprises a remarkable proportion of the leopard diet. In the meantime, assessing probable conflicts with local communities is recommended as a parallel management action to ensure long-term human–leopard coexistence. Our findings will aid wildlife managers in prey-depleted arid environments of western Asia to identify susceptible wild prey populations to predation by large carnivores; hence, significantly contribute in development and implementation of effective conservation measures to mitigate management conflicts.  相似文献   
80.
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号