首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7990篇
  免费   744篇
  国内免费   2篇
  8736篇
  2024年   4篇
  2023年   41篇
  2022年   82篇
  2021年   182篇
  2020年   117篇
  2019年   139篇
  2018年   172篇
  2017年   178篇
  2016年   222篇
  2015年   419篇
  2014年   470篇
  2013年   599篇
  2012年   738篇
  2011年   703篇
  2010年   442篇
  2009年   409篇
  2008年   566篇
  2007年   508篇
  2006年   496篇
  2005年   438篇
  2004年   464篇
  2003年   327篇
  2002年   374篇
  2001年   88篇
  2000年   48篇
  1999年   75篇
  1998年   90篇
  1997年   54篇
  1996年   34篇
  1995年   26篇
  1994年   28篇
  1993年   31篇
  1992年   17篇
  1991年   19篇
  1990年   20篇
  1989年   16篇
  1988年   8篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8736条查询结果,搜索用时 10 毫秒
401.
The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.  相似文献   
402.
403.
Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the “classic” human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.  相似文献   
404.
Human airway cilia contain soluble adenylyl cyclase (sAC) that produces cAMP upon HCO3/CO2 stimulation to increase ciliary beat frequency (CBF). Because apical HCO3 exchange depends on cystic fibrosis transmembrane conductance regulator (CFTR), malfunctioning CFTR might impair sAC-mediated CBF regulation in cells from patients with cystic fibrosis (CF). By Western blot, sAC isoforms are equally expressed in normal and CF airway epithelial cells, but CBF decreased more in CF than normal cells upon increased apical HCO3/CO2 exposure in part because of greater intracellular acidification from unbalanced CO2 influx (estimated by 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) fluorescence). Importantly, ciliated cell-specific cAMP production (estimated by FRET fluorescence ratio changes of tagged cAMP-dependent protein kinase (PKA) subunits expressed under a ciliated cell-specific promoter) in response to increased apical HCO3/CO2 perfusion was higher in normal compared with CF cells. Inhibition of bicarbonate influx via CFTR (CFTRinh172) and inhibition of sAC (KH7) and PKA activation (H89) led to larger CBF declines in normal cells, now comparable with changes seen in CF cells. These inhibitors also reduced FRET changes in normal cells to the level of CF cells with the expected exception of H89, which does not prevent dissociation of the fluorescently tagged PKA subunits. Basolateral permeabilization and subsequent perfusion with HCO3/CO2 rescued CBF and FRET changes in CF cells to the level of normal cells. These results suggest that CBF regulation by sAC-produced cAMP could be impaired in CF, thereby possibly contributing to mucociliary dysfunction in this disease, at least during disease exacerbations when airway acidification is common.  相似文献   
405.
The innate antiviral response is mediated, at least in part, by Toll-like receptors (TLRs). TLR3 signaling is activated in response to viral infection, and the absence of TLR3 in mice significantly increases mortality after infection with enteroviruses that cause myocarditis and/or dilated cardiomyopathy. We screened TLR3 in patients diagnosed with enteroviral myocarditis/cardiomyopathy and identified a rare variant in one patient as well as a significantly increased occurrence of a common polymorphism compared with controls. Expression of either variant resulted in significantly reduced TLR3-mediated signaling after stimulation with synthetic double-stranded RNA. Furthermore, Coxsackievirus B3 infection of cell lines expressing mutated TLR3 abrogated activation of the type I interferon pathway, leading to increased viral replication. TLR3-mediated type I interferon signaling required cellular autophagy and was suppressed by 3-methyladenine and bafilomycin A1, by inhibitors of lysosomal proteolysis, and by reduced expression of Beclin 1, Atg5, or microtubule-associated protein 1 light chain 3β (MAP1LC3β). However, TLR3-mediated signaling was restored upon exogenous expression of Beclin 1 or a variant MAP1LC3β fusion protein refractory to RNA interference. These data suggest that individuals harboring these variants may have a blunted innate immune response to enteroviral infection, leading to reduced viral clearance and an increased risk of cardiac pathology.  相似文献   
406.
The rapid accumulation of sequence data generated by the various genome sequencingprojects and the generation of expressed sequence tag databases has resulted in the need forthe development of fast and sensitive methods for the identification and characterisation oflarge numbers of gel electrophoretically separated proteins to translate the sequence data intobiological function. To achieve this goal it has been necessary to devise new approaches toprotein analysis: matrix-assisted laser desorption and electrospray mass spectrometry havebecome important protein analytical tools which are both fast and sensitive. When combinedwith a robotic system for the in-gel digestion of electrophoretically separated proteins, itbecomes possible to rapidly identify many proteins by searching databases with MS data. Thepower of this combination of techniques is demonstrated by an analysis of the proteins presentin the myofibrillar lattice of the indirect flight muscle of Drosophila melanogaster. Theproteins were separated by SDS-PAGE and in-gel proteolysis was performed bothautomatically and manually. All 16 major proteins could quickly be identified by massspectrometry. Although most of the protein components were known to be present in theflight muscle, two new components were also identified. The combination of methodsdescribed offers a means for the rapid identification of large numbers of gel separatedproteins.  相似文献   
407.
The length and precise linkage of polyubiquitin chains is important for their biological activity. Although other ubiquitin-like proteins have the potential to form polymeric chains their identification in vivo is challenging and their functional role is unclear. Vertebrates express three small ubiquitin-like modifiers, SUMO-1, SUMO-2, and SUMO-3. Mature SUMO-2 and SUMO-3 are nearly identical and contain an internal consensus site for sumoylation that is missing in SUMO-1. Combining state-of-the-art mass spectrometry with an "in vitro to in vivo" strategy for post-translational modifications, we provide direct evidence that SUMO-1, SUMO-2, and SUMO-3 form mixed chains in cells via the internal consensus sites for sumoylation in SUMO-2 and SUMO-3. In vitro, the chain length of SUMO polymers could be influenced by changing the relative amounts of SUMO-1 and SUMO-2. The developed methodology is generic and can be adapted for the identification of other sumoylation sites in complex samples.  相似文献   
408.
Fire accident victims who sustain both thermal injury to skin and smoke inhalation have gross evidence of systemic and pulmonary oxidant damage and acute lung injury. We hypothesized that gamma-tocopherol (gT), a reactive O(2) and N(2) scavenger, when delivered into the airway, would attenuate lung injury induced by burn and smoke inhalation. Acute lung injury was induced in chronically prepared, anesthetized sheep by 40% total burn surface area, third-degree skin burn and smoke insufflation (48 breaths of cotton smoke, <40 degrees C). The study groups were: (1) Sham (not injured, flaxseed oil (FO)-nebulized, n=6); (2) SA-neb (injured, saline-nebulized, n=6); (3) FO-neb (injured, FO-nebulized, n=6); and (4) gT+FO-neb (injured, gT and FO-nebulized, n=6). Nebulization was started 1 h postinjury, and 24 ml of FO with or without gT (51 mg/ml) was delivered into airways over 47 h using our newly developed lipid aerosolization device (droplet size: 2.5-5 microm). The burn- and smoke inhalation-induced pathological changes seen in the saline group were attenuated by FO nebulization; gT addition further improved pulmonary function. Pulmonary gT delivery along with a FO source may be a novel effective treatment strategy in management of patients with acute lung injury.  相似文献   
409.
410.
Yeast genes of phospholipid biosynthesis are negatively regulated by repressor protein Opi1 when precursor molecules inositol and choline (IC) are available. Opi1-triggered gene repression is mediated by recruitment of the Sin3 corepressor complex. In this study, we systematically investigated the regulatory contribution of subunits of Sin3 complexes and identified Pho23 as important for IC-dependent gene repression. Two non-overlapping regions within Pho23 mediate its direct interaction with Sin3. Previous work has shown that Sin3 recruits the histone deacetylase (HDAC) Rpd3 to execute gene repression. While deletion of SIN3 strongly alleviates gene repression by IC, an rpd3 null mutant shows almost normal regulation. We thus hypothesized that various HDACs may contribute to Sin3-mediated repression of IC-regulated genes. Indeed, a triple mutant lacking HDACs, Rpd3, Hda1 and Hos1, could phenocopy a sin3 single mutant. We show that these proteins are able to contact Sin3 in vitro and in vivo and mapped three distinct HDAC interaction domains, designated HID1, HID2 and HID3. HID3, which is identical to the previously described structural motif PAH4 (paired amphipathic helix), can bind all HDACs tested. Chromatin immunoprecipitation studies finally confirmed that Hda1 and Hos1 are recruited to promoters of phospholipid biosynthetic genes INO1 and CHO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号