首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7971篇
  免费   742篇
  国内免费   2篇
  2023年   33篇
  2022年   72篇
  2021年   182篇
  2020年   117篇
  2019年   139篇
  2018年   172篇
  2017年   178篇
  2016年   222篇
  2015年   419篇
  2014年   470篇
  2013年   599篇
  2012年   738篇
  2011年   703篇
  2010年   442篇
  2009年   409篇
  2008年   566篇
  2007年   508篇
  2006年   496篇
  2005年   438篇
  2004年   464篇
  2003年   327篇
  2002年   374篇
  2001年   88篇
  2000年   48篇
  1999年   75篇
  1998年   90篇
  1997年   54篇
  1996年   34篇
  1995年   26篇
  1994年   28篇
  1993年   31篇
  1992年   17篇
  1991年   19篇
  1990年   20篇
  1989年   16篇
  1988年   8篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8715条查询结果,搜索用时 234 毫秒
251.
The ATP-binding cassette half-transporter Mdl1 from Saccharomyces cerevisiae has been proposed to be involved in the quality control of misassembled respiratory chain complexes by exporting degradation products generated by the m-AAA proteases from the matrix. Direct functional or structural data of the transport complex are, however, not known so far. After screening expression in various hosts, Mdl1 was overexpressed 100-fold to 1% of total mitochondrial membrane protein in S. cerevisiae. Based on detergent screens, Mdl1 was solubilized and purified to homogeneity. Mdl1 showed a high binding affinity for MgATP (Kd = 0.26 microm) and an ATPase activity with a Km of 0.86 mm (Hill coefficient of 0.98) and a turnover rate of 2.6 ATP/s. Mutagenesis of the conserved glutamate downstream of the Walker B motif (E599Q) or the conserved histidine of the H-loop (H631A) abolished ATP hydrolysis, whereas ATP binding was not affected. Mdl1 reconstituted into liposomes showed an ATPase activity similar to the solubilized complex. By single particle electron microscopy, a first three-dimensional structure of the mitochondrial ATP-binding cassette transporter was derived at 2.3-nm resolution, revealing a homodimeric complex in an open conformation.  相似文献   
252.
Oligodendrocyte precursor cells modify the neural cell adhesion molecule (NCAM) by the attachment of polysialic acid (PSA). Upon further differentiation into mature myelinating oligodendrocytes, however, oligodendrocyte precursor cells down-regulate PSA synthesis. In order to address the question of whether this down-regulation is a necessary prerequisite for the myelination process, transgenic mice expressing the polysialyltransferase ST8SiaIV under the control of the proteolipid protein promoter were generated. In these mice, postnatal down-regulation of PSA in oligodendrocytes was abolished. Most NCAM-120, the characteristic NCAM isoform in oligodendrocytes, carried PSA in the transgenic mice at all stages of postnatal development. Polysialylated NCAM-120 partially co-localized with myelin basic protein and was present in purified myelin. The permanent expression of PSA-NCAM in oligodendrocytes led to a reduced myelin content in the forebrains of transgenic mice during the period of active myelination and in the adult animal. In situ hybridizations indicated a significant decrease in the number of mature oligodendrocytes in the forebrain. Thus, down-regulation of PSA during oligodendrocyte differentiation is a prerequisite for efficient myelination by mature oligodendrocytes. Furthermore, myelin of transgenic mice exhibited structural abnormalities like redundant myelin and axonal degeneration, indicating that the down-regulation of PSA is also necessary for myelin maintenance.  相似文献   
253.
Recent developments indicate that the regeneration of beta cell function and mass in patients with diabetes is possible. A regenerative approach may represent an alternative treatment option relative to current diabetes therapies that fail to provide optimal glycemic control. Here we report that the inactivation of GSK3 by small molecule inhibitors or RNA interference stimulates replication of INS-1E rat insulinoma cells. Specific and potent GSK3 inhibitors also alleviate the toxic effects of high concentrations of glucose and the saturated fatty acid palmitate on INS-1E cells. Furthermore, treatment of isolated rat islets with structurally diverse small molecule GSK3 inhibitors increases the rate beta cell replication by 2-3-fold relative to controls. We propose that GSK3 is a regulator of beta cell replication and survival. Moreover, our results suggest that specific inhibitors of GSK3 may have practical applications in beta cell regenerative therapies.  相似文献   
254.
255.
256.
The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz) elicited by familiar (meaningful) objects is well established in electroencephalogram (EEG) research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC) using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar object processing. In contrast, unfamiliar objects entailed a sparse number of only unidirectional connections converging to parietal areas. Considering the directionality of brain interactions, the current results might indicate that successful activation of object representations is realized through reciprocal (feed-forward and feed-backward) information-transfer of oscillatory connections between distant, functionally specific brain areas.  相似文献   
257.
Sugars and sugar degradation products readily react in vitro with guanine derivatives, resulting in the formation of DNA-bound advanced glycation end-products (DNA-AGEs). The two diastereomers of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (CEdG(A,B)) and the cyclic adduct of methylglyoxal and 2'-deoxyguanosine (mdG) (N(2)-7-bis(1-hydroxy-2-oxopropyl)-2'-deoxyguanosine have also been detected in cultured cells and/or in vivo. LC-MS/MS methods have been developed to analyze sensitively DNA adducts in vitro and in vivo. In this paper, the chemical structures of possible DNA-AGEs and the application of LC-MS/MS to measure DNA-AGEs are reviewed.  相似文献   
258.
Induction of the otic placode involves a number of regulatory interactions. Early studies revealed that the induction of this program is initiated by instructive signals from the mesendoderm as well as from the adjacent hindbrain. Further investigations on the molecular level identified in zebrafish Fgf3, Fgf8, Foxi1, Pax8, Dlx3b and Dlx4b genes as key players during the induction phase. Thereafter an increasing number of genes participates in the regulatory interactions finally resulting in a highly structured sensory organ. Based on data from zebrafish we selected medaka genes with presumptive functions during early ear development for an expression analysis. In addition we isolated Foxi1 and Dlx3b gene fragments from embryonic cDNA. Altogether we screened the spatio-temporal distribution of more than 20 representative marker genes for otic development in medaka embryos, with special emphasis on the early phases. Whereas the spatial distribution of these genes is largely conserved between medaka and zebrafish, our comparative analysis revealed several differences, in particular for the timing of expression.  相似文献   
259.
Posttranslational modifications of histones are involved in regulation of chromatin structure and gene activity. Whereas the modifications of the core histones H2A, H2B, H3, and H4 have been extensively studied, our knowledge of H1 modifications remained mainly limited to its phosphorylation. Here we analyzed the composition of histone H1 variants and their modifications in two human cell lines and nine mouse tissues. Use of a hybrid linear ion trap-orbitrap mass spectrometer facilitated assignment of modifications by high resolution and low ppm mass accuracy for both the precursor and product mass spectra. Across different tissues we identified a range of phosphorylation, acetylation, and methylation sites. We also mapped sites of ubiquitination and report identification of formylated lysine residues. Interestingly many of the mapped modifications are located within the globular domain of the histones at sites that are thought to be involved in binding to nucleosomal DNA. Investigation of mouse tissue in addition to cell lines uncovered a number of interesting differences. For example, whereas methylation sites are frequent in tissues, this type of modification was much less abundant in cultured cells and escaped detection. Our study significantly extends the known spectrum of linker histone variability.  相似文献   
260.
Adipocytes are central players in energy metabolism and the obesity epidemic, yet their protein composition remains largely unexplored. We investigated the adipocyte proteome by combining high accuracy, high sensitivity protein identification technology with subcellular fractionation of nuclei, mitochondria, membrane, and cytosol of 3T3-L1 adipocytes. We identified 3,287 proteins while essentially eliminating false positives, making this one of the largest high confidence proteomes reported to date. Comprehensive bioinformatics analysis revealed that the adipocyte proteome, despite its specialized role, is very complex. Comparison with microarray data showed that the mRNA abundance of detected versus non-detected proteins differed by less than 2-fold and that proteomics covered as large a proportion of the insulin signaling pathway. We used the Endeavour gene prioritization algorithm to associate a number of factors with vesicle transport in response to insulin stimulation, a key function of adipocytes. Our data and analysis can serve as a model for cellular proteomics. The adipocyte proteome is available as supplemental material and from the Max-Planck Unified Proteome database.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号