首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7971篇
  免费   742篇
  国内免费   2篇
  2023年   33篇
  2022年   72篇
  2021年   182篇
  2020年   117篇
  2019年   139篇
  2018年   172篇
  2017年   178篇
  2016年   222篇
  2015年   419篇
  2014年   470篇
  2013年   599篇
  2012年   738篇
  2011年   703篇
  2010年   442篇
  2009年   409篇
  2008年   566篇
  2007年   508篇
  2006年   496篇
  2005年   438篇
  2004年   464篇
  2003年   327篇
  2002年   374篇
  2001年   88篇
  2000年   48篇
  1999年   75篇
  1998年   90篇
  1997年   54篇
  1996年   34篇
  1995年   26篇
  1994年   28篇
  1993年   31篇
  1992年   17篇
  1991年   19篇
  1990年   20篇
  1989年   16篇
  1988年   8篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   7篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1967年   2篇
  1960年   3篇
排序方式: 共有8715条查询结果,搜索用时 298 毫秒
211.
Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.  相似文献   
212.
The catalytical isoforms p110γ and p110δ of phosphatidylinositide 3-kinase γ (PI3Kγ) and PI3Kδ play an important role in the pathogenesis of asthma. Two key elements in allergic asthma are increased levels of eosinophils and IgE. Dual pharmacological inhibition of p110γ and p110δ reduces asthma-associated eosinophilic lung infiltration and ameliorates disease symptoms, whereas the absence of enzymatic activity in p110γKOδD910A mice increases IgE and basal eosinophil counts. This suggests that long-term inhibition of p110γ and p110δ might exacerbate asthma. Here, we analysed mice genetically deficient for both catalytical subunits (p110γ/δ-/-) and determined basal IgE and eosinophil levels and the immune response to ovalbumin-induced asthma. Serum concentrations of IgE, IL-5 and eosinophil numbers were significantly increased in p110γ/δ-/- mice compared to single knock-out and wildtype mice. However, p110γ/δ-/- mice were protected against OVA-induced infiltration of eosinophils, neutrophils, T and B cells into lung tissue and bronchoalveolar space. Moreover, p110γ/δ-/- mice, but not single knock-out mice, showed a reduced bronchial hyperresponsiveness. We conclude that increased levels of eosinophils and IgE in p110γ/δ-/- mice do not abolish the protective effect of p110γ/δ-deficiency against OVA-induced allergic airway inflammation.  相似文献   
213.
False tendons (FTs) are fibrous or fibromuscular bands that can be found in both the normal and abnormal human heart in various anatomical forms depending on their attachment points, tissue types, and geometrical properties. While FTs are widely considered to affect the function of the heart, their specific roles remain largely unclear and unexplored. In this paper, we present an in silico study of the ventricular activation time of the human heart in the presence of FTs. This study presents the first computational model of the human heart that includes a FT, Purkinje network, and papillary muscles. Based on this model, we perform simulations to investigate the effect of different types of FTs on hearts with the electrical conduction abnormality of a left bundle branch block (LBBB). We employ a virtual population of 70 human hearts derived from a statistical atlas, and run a total of 560 simulations to assess ventricular activation time with different FT configurations. The obtained results indicate that, in the presence of a LBBB, the FT reduces the total activation time that is abnormally augmented due to a branch block, to such an extent that surgical implant of cardiac resynchronisation devices might not be recommended by international guidelines. Specifically, the simulation results show that FTs reduce the QRS duration at least 10 ms in 80% of hearts, and up to 45 ms for FTs connecting to the ventricular free wall, suggesting a significant reduction of cardiovascular mortality risk. In further simulation studies we show the reduction in the QRS duration is more sensitive to the shape of the heart then the size of the heart or the exact location of the FT. Finally, the model suggests that FTs may contribute to reducing the activation time difference between the left and right ventricles from 12 ms to 4 ms. We conclude that FTs may provide an alternative conduction pathway that compensates for the propagation delay caused by the LBBB. Further investigation is needed to quantify the clinical impact of FTs on cardiovascular mortality risk.  相似文献   
214.
215.
216.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   
217.
The causes underlying the increased mortality of honeybee Apis mellifera colonies observed over the past decade remain unclear. Since so far the evidence for monocausal explanations is equivocal, involvement of multiple stressors is generally assumed. We here focus on various aspects of forage availability, which have received less attention than other stressors because it is virtually impossible to explore them empirically. We applied the colony model BEEHAVE, which links within‐hive dynamics and foraging, to stylized landscape settings to explore how foraging distance, forage supply, and “forage gaps”, i.e. periods in which honeybees cannot find any nectar and pollen, affect colony resilience and the mechanisms behind. We found that colony extinction was mainly driven by foraging distance, but the timing of forage gaps had strongest effects on time to extinction. Sensitivity to forage gaps of 15 days was highest in June or July even if otherwise forage availability was sufficient to survive. Forage availability affected colonies via cascading effects on queen's egg‐laying rate, reduction of new‐emerging brood stages developing into adult workers, pollen debt, lack of workforce for nursing, and reduced foraging activity. Forage gaps in July led to reduction in egg‐laying and increased mortality of brood stages at a time when the queen's seasonal egg‐laying rate is at its maximum, leading to colony failure over time. Our results demonstrate that badly timed forage gaps interacting with poor overall forage supply reduce honeybee colony resilience. Existing regulation mechanisms which in principle enable colonies to cope with varying forage supply in a given landscape and year, such as a reduction in egg‐laying, have only a certain capacity. Our results are hypothetical, as they are obtained from simplified landscape settings, but they are consistent with existing empirical knowledge. They offer ample opportunities for testing the predicted effects of forage stress in controlled experiments.  相似文献   
218.
219.
Sphagnum farming In Germany, 99% of the 1.4 Mha of peatlands have been drained for land use. These degraded areas release enormous amounts of greenhouse gases. In contrast, land use on rewetted peatlands (= paludiculture) not only avoids greenhouse gas emissions, but offers numerous additional environmental benefits, while maintaining biomass production. Field studies have demonstrated the additional benefits of peatmoss (Sphagnum) cultivation for plant and animal diversity. After harvesting of the upper moss layer, the biomass is prepared to be used as a substitute for peat in horticultural substrates. Sphagnum farming is a promising and sustainable land use alternative for degraded bog areas.  相似文献   
220.

Objectives

To use permeabilized cells of the fission yeast, Schizosaccharomyces pombe, that expresses human UDP-glucose 6-dehydrogenase (UGDH, EC 1.1.1.22), for the production of UDP-glucuronic acid from UDP-glucose.

Results

In cell extracts no activity was detected. Therefore, cells were permeabilized with 0.3 % (v/v) Triton X-100. After washing away all low molecular weight metabolites, the permeabilized cells were directly used as whole cell biocatalyst. Substrates were 5 mM UDP-glucose and 10 mM NAD+. Divalent cations were not added to the reaction medium as they promoted UDP-glucose hydrolysis. With this reaction system 5 mM UDP-glucose were converted into 5 mM UDP-glucuronic acid within 3 h.

Conclusions

Recombinant permeabilized cells of S. pombe can be used to synthesize UDP-glucuronic acid with 100 % yield and selectivity.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号