首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   883篇
  免费   226篇
  1109篇
  2021年   20篇
  2016年   6篇
  2015年   14篇
  2014年   20篇
  2013年   45篇
  2012年   40篇
  2011年   49篇
  2010年   27篇
  2009年   21篇
  2008年   28篇
  2007年   35篇
  2006年   33篇
  2005年   33篇
  2004年   35篇
  2003年   26篇
  2002年   48篇
  2001年   33篇
  2000年   36篇
  1999年   30篇
  1998年   30篇
  1997年   20篇
  1996年   14篇
  1995年   15篇
  1994年   15篇
  1993年   13篇
  1992年   36篇
  1991年   22篇
  1990年   20篇
  1989年   19篇
  1988年   13篇
  1987年   23篇
  1986年   20篇
  1985年   23篇
  1984年   18篇
  1983年   23篇
  1982年   21篇
  1981年   9篇
  1980年   14篇
  1979年   16篇
  1978年   13篇
  1977年   10篇
  1976年   7篇
  1975年   9篇
  1973年   15篇
  1972年   9篇
  1971年   6篇
  1970年   8篇
  1968年   10篇
  1967年   6篇
  1966年   9篇
排序方式: 共有1109条查询结果,搜索用时 31 毫秒
101.
Garnering support from local people is critical for maintaining ecologically viable and functional protected areas. However, empirical data illustrating local people’s awareness of the importance of nature’s services is limited; hence possibly impeding effective ecosystem (environmental)-services based conservation efforts. Using data from five protected forests in four developing Southeast Asian countries, we provide evidence that local people living near parks value a wide range of environmental services, including cultural, provisioning, and regulating services, provided by the forests. Local people with longer residency valued environmental services more. Educated as well as poor people valued forest ecosystem services more. Conservation education has some influence on people’s environmental awareness. For conservation endeavors to be successful, large-scale transmigration programs should be avoided and local people must be provided with alternative sustenance opportunities and basic education in addition to environmental outreach to reduce their reliance on protected forests and to enhance conservation support.  相似文献   
102.
Cellulosilyticum ruminicola H1 is a newly described bacterium isolated from yak (Bos grunniens) rumen and is characterized by its ability to grow on a variety of hemicelluloses and degrade cellulosic materials. In this study, we performed the whole-genome sequencing of C. ruminicola H1 and observed a comprehensive set of genes encoding the enzymes essential for hydrolyzing plant cell wall. The corresponding enzymatic activities were also determined in strain H1; these included endoglucanases, cellobiohydrolases, xylanases, mannanase, pectinases, and feruloyl esterases and acetyl esterases to break the interbridge cross-link, as well as the enzymes that degrade the glycosidic bonds. This bacterium appears to produce polymer hydrolases that act on both soluble and crystal celluloses. Approximately half of the cellulytic activities, including cellobiohydrolase (50%), feruloyl esterase (45%), and one third of xylanase (31%) and endoglucanase (36%) activities were bound to cellulosic fibers. However, only a minority of mannase (6.78%) and pectinase (1.76%) activities were fiber associated. Strain H1 seems to degrade the plant-derived polysaccharides by producing individual fibrolytic enzymes, whereas the majority of polysaccharide hydrolases contain carbohydrate-binding module. Cellulosome or cellulosomelike protein complex was never isolated from this bacterium. Thus, the fibrolytic enzyme production of strain H1 may represent a different strategy in cellulase organization used by most of other ruminal microbes, but it applies the fungal mode of cellulose production.The ruminant rumens are long believed to be the anaerobic environments efficiently degrading the plant-derived polysaccharides, which is attributed to the inhabited abundant rumen microorganisms. They implement the fibrolytic degradation by the combination of the enzymes comprising of cellulases, hemicellulases, and to a lesser extent pectinases and ligninases (12). The rumen bacteria are outnumbered of the other rumen microbes; however, only a few of cellulolytic bacteria have been isolated from rumens. Ruminococcus flavefaciens, Ruminococcus albus, and Fibrobacter succinogenes are considered to be the most important cellulose-degrading bacteria in the rumen (18), and they produce a set of cellulolytic enzymes, including endoglucanases, exoglucanases (generally cellobiohydrolase), and β-glucosidases, as well as hemicellulases. In addition, the predominant ruminal hemicellulose-digesting bacteria such as Butyrivibrio fibrisolvens and Prevotella ruminicola lack the ability to digest cellulose but degrade xylan and pectin and utilize the degraded soluble sugars as substrates (10, 14). Although the robust cellulolytic species F. succinogenes degrades xylan, it cannot use the pentose product as a carbon source (24). Culture-independent approaches indicate that the three cellulolytic bacterial species represent only ∼2% of the ruminal bacterial 16S rRNA (43). Therefore, many varieties of rumen microbes remain uncultured (2). In recent years, rumen metagenomics studies have revealed the vast diversity of fibrolytic enzymes, multiple domain proteins, and the complexity of microbial composition in the ecosystem (9, 17). Hence, it is likely that the entire microbial community is necessary for the implementation of an efficient fibrolytic process in the rumen, including the uncultured species.In the rumen and other fibrolytic ecosystems, cellulolytic bacteria have to cope with the structural complexity of lignocelluloses and the interspecies competition; thus, not only a variety of plant polymer-degrading enzymes but also a noncatalytic assistant strategy, such as including adhesion of cells to substrates by a variety of anchoring domains, is required (8, 33, 38, 39). The (hemi)cellulolytic enzyme systems have been intensively studied for nonrumen anaerobic bacteria, including Clostridium thermocellum (19, 40), Clostridium cellulolyticum (6), Clostridium cellulovorans (13), and Clostridium stercorarium (47), as well as the rumen species, Rumicoccocus albus (35), Ruminococcus flavefaciens (32), and Fibrobacter succinogenes (4). The results indicate that most of them, except for Fibrobacter succinogenes, produce multiple cellulolytic enzymes integrated in a complex, cellulosome, and free individual proteins.The yak (Bos grunniens) is a large ruminant (∼1,000 kg) in the bovine family that lives mainly on the Qinghai-Tibetan Plateau in China at an altitude of 3,000 m above sea level. It is a local species that lives mainly on the world''s highest plateau. Yaks live in a full-grazing style with grasses, straws, and lichens as their exclusive feed, so the yak rumen can harbor a microbial flora distinct from those of other ruminants due to their fiber-component diet, since diet can be a powerful factor in regulating mammalian gut microbiome (27). A very different prokaryote community structure was revealed for yak rumen in our previous work based on the 16S rRNA diversity, which showed fewer phyla than for cattle but that a higher ratio of sequences was related to uncultured bacteria (2).We previously isolated a novel anaerobic fibrolytic bacterium, Cellulosilyticum ruminicola H1, from the rumen of a domesticated yak (11). Strain H1 grew robustly on natural plant fibers such as corn cob, alfalfa, and ryegrass as the sole carbon and energy sources, as well as on a variety of polysaccharides, including cellulose, xylan, mannan, and pectin, but not monosaccharides such as glucose, which is preferred by most ruminal bacteria. In the present study, using a draft of its genome and enzymatic characterization, we analyzed the enzymatic activities and the structures of the polymer hydrolases of strain H1 that were involved in the hydrolysis of complex polysaccharides.  相似文献   
103.

Background

Cultured spinal motor neurons are a valuable tool to study basic mechanisms of development, axon growth and pathfinding, and, importantly, to analyze the pathomechanisms underlying motor neuron diseases. However, the application of this cell culture model is limited by the lack of efficient gene transfer techniques which are available for other neurons. To address this problem, we have established magnetofection as a novel method for the simple and efficient transfection of mouse embryonic motor neurons. This technique allows for the study of the effects of gene expression and silencing on the development and survival of motor neurons.

Results

We found that magnetofection, a novel transfection technology based on the delivery of DNA-coated magnetic nanobeads, can be used to transfect primary motor neurons. Therefore, in order to use this method as a new tool for studying the localization and transport of axonal proteins, we optimized conditions and determined parameters for efficient transfection rates of >45% while minimizing toxic effects on survival and morphology. To demonstrate the potential of this method, we have used transfection with plasmids encoding fluorescent fusion-proteins to show for the first time that the spinal muscular atrophy-disease protein Smn is actively transported along axons of live primary motor neurons, supporting an axon-specific role for Smn that is different from its canonical function in mRNA splicing. We were also able to show the suitability of magnetofection for gene knockdown with shRNA-based constructs by significantly reducing Smn levels in both cell bodies and axons, opening new opportunities for the study of the function of axonal proteins in motor neurons.

Conclusions

In this study we have established an optimized magnetofection protocol as a novel transfection method for primary motor neurons that is simple, efficient and non-toxic. We anticipate that this novel approach will have a broad applicability in the study of motor neuron development, axonal trafficking, and molecular mechanisms of motor neuron diseases.  相似文献   
104.
Quantitative studies were conducted to evaluate the efficiency of the slit sampler in collecting airborne Serratia marcescens and Bacillus subtilis var. niger, and to compare it with the collecting efficiency of the all-glass impinger AGI-30. The slit sampler was approximately 50% less efficient than the AGI-30. This ratio remained the same whether liquid or dry cultures were disseminated when the sample was taken at 2 min of aerosol cloud life. At 30 min of aerosol cloud life, this ratio was approximately 30% for B. subtilis var. niger. S. marcescens recoveries by the slit sampler were, however, only 17% lower than the AGI-30 at 30 min of cloud age, indicating a possible interaction involving the more labile vegetative cells, aerosol age, and method of collection.  相似文献   
105.
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.  相似文献   
106.
107.
Two strains of Rhodotorula and one of Trichosporon precipitated dissolved copper with H2S formed by reducing elemental sulfur with glucose. Iron stimulated this activity under certain conditions. In the case of Rhodotorula strain L, iron stimulated copper precipitation aerobically at a copper concentration of 18 but not 180 μg/ml. Anaerobically, the L strain required iron for precipitation of copper from a medium with 180 μg of copper per ml. Rhodotorula strain L was able to precipitate about five times as much copper anaerobically as aerobically. The precipitated copper was identified as copper sulfide, but its exact composition could not be ascertained. Iron was not precipitated by the H2S formed by any of the yeasts. Added as ferric iron, it was able to redissolve copper sulfide formed aerobically by Rhodotorula strain L from 18 but not 180 μg of copper per ml of medium. Since the yeasts were derived from acid mine-waters, their ability to precipitate copper may be of geomicrobial importance.  相似文献   
108.
Cary JW  Ehrlich KC 《Mycopathologia》2006,162(3):167-177
Aflatoxins (AFs) are toxic and carcinogenic secondary metabolites produced by isolates of Aspergillus section Flavi as well as a number of Aspergillus isolates that are classified outside of section Flavi. Characterization of the AF and sterigmatocystin (ST) gene clusters and analysis of factors governing regulation of their biosynthesis has resulted in these two mycotoxins being the most extensively studied of fungal secondary metabolites. This wealth of information has allowed the determination of the molecular basis for non-production of AF in natural isolates of A. flavus and domesticated strains of A. oryzae. This review provides an overview of the molecular analysis of the AF and ST gene clusters as well as new information on an AF gene cluster identified in the non-section Flavi isolate, Aspergillus ochraceoroseus. Additionally, molecular phylogenetic analysis using AF biosynthetic gene sequences as well as ribosomal DNA internal transcribed spacer (ITS) sequences between various section Flavi and non-section Flavi species has enabled determination of the probable evolutionary history of the AF and ST gene clusters. A model for the evolution of the AF and ST gene clusters as well as possible biological roles for AF are discussed.  相似文献   
109.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   
110.

Background  

Common structural biology methods (i.e., NMR and molecular dynamics) often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA) is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号