首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   17篇
  国内免费   4篇
  2022年   3篇
  2021年   5篇
  2018年   1篇
  2017年   1篇
  2015年   10篇
  2013年   6篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
51.
52.

Background

Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.

Results

Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.

Conclusions

Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.  相似文献   
53.
54.
A previous study led to the discovery of new proteinases in yeast (Achstetter, T., Ehmann, C., and Wolf, D. H. (1981) Arch. Biochem. Biophys. 207, 445-454). The search for proteolytic enzymes active in the neutral pH range has been extended. Studies were done on a mutant lacking four well-known proteinases involved in protein degradation, the two endoproteinases A and B and the two carboxypeptidases Y and S. Twenty-nine chromogenic peptides (amino terminally blocked peptidyl-4-nitroanilides) as well as [3H]methylcasein were used as substrates in this search. For the detection of endoproteolytic activity using chromogenic peptide substrates two versions of the assay were used. In one system the direct cleavage of the 4-nitroanilide bond was measured. In the second, the cleavage of the chromogenic peptide at some site other than the 4-nitroanilide bond was measured. Both variations led to the discovery of multiple proteinase activities. Regulation of these proteolytic activities under different growth conditions of cells was observed. Proteolytic activity on [3H]methylcasein was also found. Ion-exchange chromatography and gel filtration were used for the reproducible separation of the multiple proteolytic activities.  相似文献   
55.
Studies on a proteinase B mutant of yeast.   总被引:1,自引:0,他引:1  
Yeast mutant lacking proteinase B activity have been isolated [Wolf, D. H. and Ehmann, C. (1978) FEBS Lett. 92, 121--124]. One of these mutants (HP232) is characterized in detail. Absence of the vacuolar localized enzyme is confirmed by checking for proteinase B activity in isolated mutant vacuoles. Defective proteinase B activity segregates 2:2 in meiotic tetrads. The mutation is shown to be recessive. Mutant proteinase B activity is not only absent against the synthetic substrate. Azocoll, but also against the physiological substrate pre-chitin synthetase, cytoplasmic malate dehydrogenase and fructose-1,6-bisphosphatase. The mutant shows normal vegetative growth, a phenomenon not consistent with the idea that proteinase B might be the activating principle of chitin synthetase zymogen in vivo. Fluorescence microscopy shows normal chitin insertion. Enzymes underlying carbon-catabolite inactivation in wild-type cells (a mechanism proposed to be possibly triggered by proteinase B) such as cytoplasmic malate dehydrogenase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase and isocitrate lyase, are inactivated also in the mutant. NADP-dependent glutamate dehydrogenase, which is found to be inactivated in glucose-starved wild-type cells, proceeds normally in the mutant. Mutant cells show more than 40% reduced protein degradation under starvation conditions. Sporulating diploids, homozygous for proteinase B absence, also exhibit an approximately 40% reduced protein degradation as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene. The time of the appearance of the first ascospores of diploid cells, homozygous for proteinase B deficiency, is delayed about 50% and sporulation frequency is reduced to about the same extent as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene.  相似文献   
56.
57.
海洋浮游藻类除通过吸收和释放分子与离子来改变其环境的化学成分外,还可通过细胞外表面一些酶的作用引起质膜外化学物质变化。在这方面,海洋浮游藻类一个主要的细胞外表面酶-碳酸酐酶(CA),在经胰蛋白酶处理从细胞质膜上释放出来后,仍保留其催化活性。当细胞外表面CA(简称细胞外CA)具活性时,可催化质膜外HCO_3~-与CO_2的相互转化,为Rubisco(磷酸核酮糖羧化酶)提供一稳定的CO_2流量环境,以维持正常的光合作用。  相似文献   
58.
Low stringency screening of a human P1 artificial chromosome library using a human hair keratin-associated protein (hKAP1.1A) gene probe resulted in the isolation of six P1 artificial chromosome clones. End sequencing and EMBO/GenBank(TM) data base analysis showed these clones to be contained in four previously sequenced human bacterial artificial chromosome clones present on chromosome 17q12-21 and arrayed into two large contigs of 290 and 225 kilobase pairs (kb) in size. A fifth, partially sequenced human bacterial artificial chromosome clone data base sequence overlapped and closed both of these contigs. One end of this 600-kb cluster harbored six gene loci for previously described human type I hair keratin genes. The other end of this cluster contained the human type I cytokeratin K20 and K12 gene loci. The center of the cluster, starting 35 kb downstream of the hHa3-I hair keratin gene, contained 37 genes for high/ultrahigh sulfur hair keratin-associated proteins (KAPs), which could be divided into a total of 7 KAP multigene families based on amino acid homology comparisons with previously identified sheep, mouse, and rabbit KAPs. To date, 26 human KAP cDNA clones have been isolated through screening of an arrayed human scalp cDNA library by means of specific 3'-noncoding region polymerase chain reaction probes derived from the identified KAP gene sequences. This screening also yielded four additional cDNA sequences whose genes were not present on this gene cluster but belonged to specific KAP gene families present on this contig. Hair follicle in situ hybridization data for single members of five different KAP multigene families all showed localization of the respective mRNAs to the upper cortex of the hair shaft.  相似文献   
59.
Studies of families with breast cancer have indicated that male carriers of BRCA2 mutations are at increased risk of prostate cancer, particularly at an early age. To evaluate the contribution of BRCA2 mutations to early-onset prostate cancer, we screened the complete coding sequence of BRCA2 for germline mutations, in 263 men with diagnoses of prostate cancer who were 相似文献   
60.
Analysis of the EBI/GeneBank(TM) data base using non-human hair keratin-associated protein (KAP) cDNA sequences as a query resulted in the identification of a first domain of high glycine-tyrosine and high sulfur KAP genes located on human chromosome 21q22.1. This domain, present on the DNA accession numbers and, was approximately 535 kb in size and contained 17 high glycine-tyrosine and 7 high sulfur KAP genes, as well as 9 KAP pseudogenes. Based on amino acid sequence comparisons of the encoded proteins, the KAP genes could be divided into seven high glycine-tyrosine gene families (KAP6-KAP8, and KAP19-KAP22) and four high sulfur gene families (KAP11, KAP13, KAP15, and KAP23). The high glycine-tyrosine genes described here appear to represent the complete set of this type of KAP genes present in the human genome. Both systematic cDNA isolation studies from an arrayed scalp cDNA library and in situ hybridization expression studies of all of the KAP genes identified in the 21q22.1 region revealed varying degrees and regions of expression of 11 members of the high tyrosine-glycine genes and 6 members of the high sulfur KAP genes in the hair forming compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号