首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   25篇
  2022年   4篇
  2021年   10篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   10篇
  2014年   5篇
  2013年   7篇
  2012年   15篇
  2011年   8篇
  2010年   10篇
  2009年   5篇
  2008年   9篇
  2007年   15篇
  2006年   19篇
  2005年   16篇
  2004年   5篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   16篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1993年   2篇
  1992年   6篇
  1991年   5篇
  1990年   8篇
  1989年   12篇
  1988年   13篇
  1987年   7篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
  1967年   3篇
  1966年   1篇
排序方式: 共有322条查询结果,搜索用时 15 毫秒
131.
Mutations critical for the central nervous system (CNS) attenuation of the Sabin vaccine strains of poliovirus (PV) are located within the viral internal ribosome entry site (IRES). We examined the interaction of the IRESs of PV type 3 (PV3) and Sabin type 3 (Sabin3) with polypyrimidine tract-binding protein (PTB) and a neural cell-specific homologue, nPTB. PTB and nPTB were found to bind to a site directly adjacent to the attenuating mutation, and binding at this site was less efficient on the Sabin3 IRES than on the PV3 IRES. Translation mediated by the PV3 and Sabin3 IRESs in neurons of the chicken embryo spinal cord demonstrated a translation deficit for the Sabin3 IRES that could be rescued by increasing PTB expression in the CNS. These data suggest that the low levels of PTB available in the CNS, coupled to a reduced binding of PTB on the Sabin3 IRES, leads to its CNS-specific attenuation. This study also demonstrates the use of the chicken embryo to easily investigate translation of RNA within a neuron in the CNS of an intact living organism.  相似文献   
132.
133.
134.
Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate l-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine–tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.  相似文献   
135.
We mapped regions of the mouse p53 primary amino acid sequence implicated in stable complex formation with simian virus 40 T antigen. A number of mutant p53 proteins failed to complex stably with T antigen in vivo but formed stable complexes with T antigen in in vitro association assays. In contrast to an earlier report (T.-H. Tan, H. Wallis, and A. J. Levine, J. Virol. 59:574-583, 1986), our study showed that two distinct regions of p53 primary amino acid sequence, highly conserved between mouse and Xenopus laevis, were implicated in stable complex formation. Our data support the proposal that, when in complex, T antigen may occupy a site on p53 that is implicated in the normal function of the protein.  相似文献   
136.
137.
Experimental and computer-assisted studies of the ability of the Agrobacterium virulence protein VirE2 to interact with an artificial bilayer lipid membrane were carried out. The lipid mixture of 63.5% diphytanoyl phosphatidylcholine, 30% diphytanoyl phosphatidylethanolamine, and 6.5% diphytanoyl phosphatidylglycerol proved to be optimal for preparation of membranes that were stable for 20 min. When a field of 10 to 50 mV was applied, the conductance of the planar bilayer lipid membranes upon introduction of the recombinant protein VirE2 abruptly increased, indicating possible formation of single long-living (1.5–5 s) pores. No proteins homologous to the protein VirE2 from Agrobacterium tumefaciens (no. P08062) were found in the SWISS-PROT or NCBI databases. Fifteen β-sheets and 12α-helices were predicted for the protein VirE2 using PROFsec. Computer-aided methods were used to build model structures consisting of two and four VirE2 proteins. It has been shown for the first time that pores with the channel diameters of 2.2 or 4 nm can be formed in a model structure consisting of two or four VirE2 molecules, respectively, which is located in the bilayer membrane. The ends of a motile interdomain loop exposed in the channel formed by two proteins narrow the channel bore to 0.7 nm.  相似文献   
138.
The nucleotide sequence of 5 S ribosomal RNA (rRNA) of type strain Sulfobacillus thermosulfidooxidans VKM B-1269 was determined. This organism represents a group of moderately thermophilic acidophilic chemolithotrophic bacteria, able to use ferrous and sulfur compounds as the sole energy source. 5 S rRNA of this bacterium is drastically different from all other known bacterial 5 S rRNA sequences. It is suggested that S. thermosulfidooxidans represents a new lineage of bacterial evolution, that diverged from other bacteria at an early step of their evolution.  相似文献   
139.
Mutations in the human cytomegalovirus DNA polymerase (UL54) can not only decrease but also increase susceptibility to the pyrophosphate (PP(i)) analogue foscarnet. The proximity of L802M, which confers resistance, and K805Q, which confers hypersusceptibility, suggests a possible unifying mechanism that affects drug susceptibility in one direction or the other. We found that the polymerase activities of L802M- and K805Q-containing mutant enzymes were literally indistinguishable from that of wild-type UL54; however, susceptibility to foscarnet was decreased or increased, respectively. A comparison with the crystal structure model of the related RB69 polymerase suggests that L802 and K805 are located in the conserved alpha-helix P that is implicated in nucleotide binding. Although L802 and K805 do not appear to make direct contacts with the incoming nucleotide, it is conceivable that changes at these residues could exert their effects through the adjacent, highly conserved amino acids Q807 and/or K811. Our data show that a K811A substitution in UL54 causes reductions in rates of nucleotide incorporation. The activity of the Q807A mutant is only marginally affected, while this enzyme shows relatively high levels of resistance to foscarnet. Based on these data, we suggest that L802M exerts its effects through subtle structural changes in alpha-helix P that affect the precise positioning of Q807 and, in turn, its presumptive involvement in binding of foscarnet. In contrast, the removal of a positive charge associated with the K805Q change may facilitate access or increase affinity to the adjacent Q807.  相似文献   
140.
Integration of T-DNA into the maize genome as a result of treatment of silks with Agrobacterium cells, containing activated vir genes, was demonstrated. In planta treatment of maize (Zea mays L) was performed during flowering in field. Cell suspension of Agrobacterium tumefaiciens strain GV3101(pTd33), carrying activated vir genes, was applied onto the previously isolated silks, which were afterwards pollinated with the pollen of the same cultivar. Integration of T-DNA into maize genome was confirmed by PCR (the nptII and gus reporter genes) and hystochemical staining of the seedling tissues, obtained from the transformed seeds. Amplification of the nptII gene showed the presence of about 60.3% of PCR-positive plants out of the total number of kanamycin-resistant seedlings examined, or 6.8% of the total of number of seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号