首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   11篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   9篇
  2012年   12篇
  2011年   13篇
  2010年   6篇
  2009年   9篇
  2008年   4篇
  2007年   11篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  1999年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1989年   3篇
  1987年   2篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1976年   4篇
  1974年   2篇
  1967年   2篇
  1966年   2篇
  1964年   1篇
  1963年   1篇
  1961年   2篇
  1953年   1篇
  1938年   1篇
  1937年   3篇
  1935年   1篇
  1934年   2篇
  1928年   2篇
  1926年   3篇
  1921年   1篇
  1883年   1篇
排序方式: 共有205条查询结果,搜索用时 953 毫秒
111.
112.
On the grounds of previous encouraging results on the antitumor activity of (1E,3E)-1,4-bis(1-naphthyl)-2,3-dinitro-1,3-butadiene (1), we have designed and synthesized two new molecules [(1E,3E)-1,4-bis(4-carboxy-1-naphthyl)-2,3-dinitro-1,3-butadiene (2) and methyl (2Z,4E)-2-methylsulfanyl-5-(1-naphthyl)-4-nitro-2,4-pentadienoate (3)] characterized by a common naphthylnitrobutadiene array but with different structural properties, with the aim of approaching to some structure-activity correlation. When 2 and 3 were analyzed in vitro for their inhibition of cell proliferation and pro-apoptotic properties, the carboxyderivative 2 did not furnish appreciable results. In contrast, 3 (which contains only one of the two naphthylnitroethenyl moieties of the original compound 1) showed remarkable activities in the range of micromolar concentrations (in six over eight cell lines its IC(50)s are in the 1-3 microM range), with a significant improvement compared to 1. In particular, 3 proved able to bind to DNA, to upregulate p53, to block cells in the G2/M phase of their cycle, and to induce apoptosis. Thus, very interestingly, the performance of 3 with respect to 1 shows that a single 1-(1-naphthyl)-2-nitroethene moiety is able to ensure better (on four out of eight of the cell lines tested) or comparable levels of activity. This result suggests that the 'molecular-simplification strategy' could furnish a useful instrument for future design in our antitumor research.  相似文献   
113.
The intrinsic activity of coagulation factor VIIa (FVIIa) is dependent on Ca(2+) binding to a loop (residues 210-220) in the protease domain. Structural analysis revealed that Ca(2+) may enhance the activity by attenuating electrostatic repulsion of Glu(296) and/or by facilitating interactions between the loop and Lys(161) in the N-terminal tail. In support of the first mechanism, the mutations E296V and D212N resulted in similar, about 2-fold, enhancements of the amidolytic activity. Moreover, mutation of the Lys(161)-interactive residue Asp(217) or Asp(219) to Ala reduced the amidolytic activity by 40-50%, whereas the K161A mutation resulted in 80% reduction. Hence one of these Asp residues in the Ca(2+)-binding loop appears to suffice for some residual interaction with Lys(161), whereas the more severe effect upon replacement of Lys(161) is due to abrogation of the interaction with the N-terminal tail. However, Ca(2+) attenuation of the repulsion between Asp(212) and Glu(296) keeps the activity above that of apoFVIIa. Altogether, our data suggest that repulsion involving Asp(212) in the Ca(2+)-binding loop suppresses FVIIa activity and that optimal activity requires a favorable interaction between the Ca(2+)-binding loop and the N-terminal tail. Crystal structures of tissue factor-bound FVIIa(D212N) and FVIIa(V158D/E296V/M298Q) revealed altered hydrogen bond networks, resembling those in factor Xa and thrombin, after introduction of the D212N and E296V mutations plausibly responsible for tethering the N-terminal tail to the activation domain. The charge repulsion between the Ca(2+)-binding loop and the activation domain appeared to be either relieved by charge removal and new hydrogen bonds (D212N) or abolished (E296V). We propose that Ca(2+) stimulates the intrinsic FVIIa activity by a combination of charge neutralization and loop stabilization.  相似文献   
114.
115.
116.
Protease-activated receptor (PAR) signaling is closely linked to the cellular activation of the pro- and anticoagulant pathways. The endothelial protein C receptor (EPCR) is crucial for signaling by activated protein C through PAR1, but EPCR may have additional roles by interacting with the 4-carboxyglutamic acid domains of procoagulant coagulation factors VII (FVII) and X (FX). Here we show that soluble EPCR regulates the interaction of FX with human or mouse tissue factor (TF)-FVIIa complexes. Mutagenesis of the FVIIa 4-carboxyglutamic acid domain and dose titrations with FX showed that EPCR interacted primarily with FX to attenuate FX activation in lipid-free assay systems. In human cell models of TF signaling, antibody inhibition of EPCR selectively blocked PAR activation by the ternary TF-FVIIa-FXa complex but not by the non-coagulant TF-FVIIa binary complex. Heterologous expression of EPCR promoted PAR1 and PAR2 cleavage by FXa in the ternary complex but did not alter PAR2 cleavage by TF-FVIIa. In murine smooth muscle cells that constitutively express EPCR and TF, thrombin and FVIIa/FX but not FVIIa alone induced PAR1-dependent signaling. Although thrombin signaling was unchanged, cells with genetically reduced levels of EPCR no longer showed a signaling response to the ternary complex. These results demonstrate that EPCR interacts with the ternary TF coagulation initiation complex to enable PAR signaling and suggest that EPCR may play a role in regulating the biology of TF-expressing extravascular and vessel wall cells that are exposed to limited concentrations of FVIIa and FX provided by ectopic synthesis or vascular leakage.  相似文献   
117.
The apparent length of FVIIa in solution was estimated by a FRET analysis. Two fluorescent probes, fluorescein (Fl-FPR) and a rhodamine derivative (TMR), were covalently attached to FVIIa. The binding site of Fl-FPR was in the protease domain whereas TMR was positioned in the Gla domain, thus allowing a length measure over virtually the whole extension of the protein. From the FRET measurements, the distances between the two probes were determined to be 61.4 for free FVIIa and 65.5? for FVIIa bound to soluble tissue factor (sTF). These seemingly short distances, compared to those anticipated based on the complex crystal structure, require that the probes stretch towards each other. Thus, the apparent distance from the FRET analysis was shown to increase with 4? upon formation of a complex with sTF in solution. However, considering how protein dynamics, based on recent molecular dynamics simulations of FVIIa and sTF:FVIIa (Y.Z. Ohkubo, J.H. Morrissey, E. Tajkhorshid, J. Thromb. Haemost. 8 (2010) 1044-1053), can influence the apparent fluorescence signal our calculations indicated that the global average conformation of active-site inhibited FVIIa is nearly unaltered upon ligation to sTF. It is known from amidolytic activity measurements that Ca(2+) binding leads to activation of FVIIa, but we have for the first time directly demonstrated conformational changes in the environment of the active site upon Ca(2+) binding. Interestingly, this Ca(2+)-induced conformational change can be noted even in the presence of an inhibitor. Forming a complex with sTF further stabilized this conformational change, leading to a more inaccessible active-site located probe.  相似文献   
118.
Digital volume correlation (DVC) provides experimental measurements of displacements and strains throughout the interior of porous materials such as trabecular bone. It can provide full-field continuum- and tissue-level measurements, desirable for validation of finite element models, by comparing image volumes from subsequent µCT scans of a sample in unloaded and loaded states.  相似文献   
119.
Pollen grains of 8 African species of Buxus and Notobuxus were examined by light and scanning electron microscopy. Three pollen types are recognized based on the exine sculpture and the evolutionary trends of the pollen characters are discussed. Pollen morphology shows the existence of three major systematic groups. These results support the previous classification of an African section Probuxus with two subsections and speak in favor of the generic rank of the Notobuxus species. Together with anatomical and taxonomical data pollen morphology and its evolutionary trends lend support to the suggestions that the centre of origin of the genus Buxus might have been in Africa, while secondary centres of evolution have developed in the neotropical and Eastasian region.  相似文献   
120.
Pseudomonas aeruginosa is an important cause of nosocomial infections and is frequently present in the airways of cystic fibrosis patients. Quorum sensing mediates P. aeruginosa's virulence and biofilm formation through density-dependent interbacterial signaling with autoinducers. N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is the major autoinducer in P. aeruginosa. We have previously shown that human airway epithelia and paraoxonases (PONs) degrade 3OC12-HSL. This study investigated the role of PON1, PON2, and PON3 in airway epithelial cell inactivation of 3OC12-HSL. All three PONs were present in murine tracheal epithelial cells, with PON2 and PON3 expressed at the highest levels. Lysates of tracheal epithelial cells from PON2, but not PON1 or PON3, knockout mice had impaired 3OC12-HSL inactivation compared with wild-type mice. In contrast, PON1-, PON2-, or PON3-targeted deletions did not affect 3OC12-HSL degradation by intact epithelia. Overexpression of PON2 enhanced 3OC12-HSL degradation by human airway epithelial cell lysates but not by intact epithelia. Finally, using a quorum-sensing reporter strain of P. aeruginosa, we found that quorum sensing was enhanced in PON2-deficient airway epithelia. In summary, these results show that loss of PON2 impairs 3OC12-HSL degradation by airway epithelial cells and suggests that diffusion of 3OC12-HSL into the airway cells can be the rate-limiting step for degradation of the molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号