首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   52篇
  2022年   7篇
  2021年   10篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   18篇
  2011年   14篇
  2010年   11篇
  2009年   9篇
  2008年   13篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   16篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   12篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
51.
Protection from fishing generally results in an increase in the abundance and biomass of species targeted by fisheries within marine reserve boundaries. Natural refuges such as depth may also protect such species, yet few studies in the Indo Pacific have investigated the effects of depth concomitant with marine reserves. We studied the effects of artisanal fishing and depth on reef fish assemblages in the Kubulau District of Vanua Levu Island, Fiji, using baited remote underwater stereo-video systems. Video samples were collected from shallow (5–8 m) and deep (25–30 m) sites inside and outside of a large old marine reserve (60.6 km2, 13 years old) and a small new marine reserve (4.25 km2, 4 years old). Species richness tended to be greater in the shallow waters of the large old reserve when compared to fished areas. In the deeper waters, species richness appeared to be comparable. The difference in shallow waters was driven by species targeted by fisheries, indicative of a depth refuge effect. In contrast, differences in the abundance composition of the fish assemblage existed between protected and fished areas for deep sites, but not shallow. Fish species targeted by local fisheries were 89% more abundant inside the large old reserve than surrounding fished areas, while non-targeted species were comparable. We observed no difference in the species richness or abundance of species targeted by fisheries inside and outside of the small new reserve. This study suggests that artisanal fishing impacts on the abundance and species richness of coral reef fish assemblages and effects of protection are more apparent with large reserves that have been established for a long period of time. Observed effects of protection also vary with depth, highlighting the importance of explicitly incorporating multiple depth strata in studies of marine reserves.  相似文献   
52.
Influenza is a major cause of morbidity and mortality in immunosuppressed persons, and vaccination often confers insufficient protection. IL-28B, a member of the interferon (IFN)-λ family, has variable expression due to single nucleotide polymorphisms (SNPs). While type-I IFNs are well known to modulate adaptive immunity, the impact of IL-28B on B- and T-cell vaccine responses is unclear. Here we demonstrate that the presence of the IL-28B TG/GG genotype (rs8099917, minor-allele) was associated with increased seroconversion following influenza vaccination (OR 1.99 p = 0.038). Also, influenza A (H1N1)-stimulated T- and B-cells from minor-allele carriers showed increased IL-4 production (4-fold) and HLA-DR expression, respectively. In vitro, recombinant IL-28B increased Th1-cytokines (e.g. IFN-γ), and suppressed Th2-cytokines (e.g. IL-4, IL-5, and IL-13), H1N1-stimulated B-cell proliferation (reduced 70%), and IgG-production (reduced>70%). Since IL-28B inhibited B-cell responses, we designed antagonistic peptides to block the IL-28 receptor α-subunit (IL28RA). In vitro, these peptides significantly suppressed binding of IFN-λs to IL28RA, increased H1N1-stimulated B-cell activation and IgG-production in samples from healthy volunteers (2-fold) and from transplant patients previously unresponsive to vaccination (1.4-fold). Together, these findings identify IL-28B as a key regulator of the Th1/Th2 balance during influenza vaccination. Blockade of IL28RA offers a novel strategy to augment vaccine responses.  相似文献   
53.
54.
DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion.  相似文献   
55.
Anaerobic ammonium oxidation with nitrite to N2 (anammox) is a recently discovered microbial reaction with interesting potential for nitrogen removal from wastewater. We enriched an anammox culture from a rotating disk contactor (near K?lliken, Switzerland) that was used to treat ammonium-rich leachate with low organic carbon content. This enrichment led to a relative population size of 88% anammox bacteria. The microorganism carrying out the anammox reaction was identified by analysis of the 16S rDNA sequence and by fluorescence in situ hybridization (FISH) with 16S-rRNA-targeting probes. The percentage sequence identity between the 16S rDNA sequences of the K?lliken anammox organism and the archetype anammox strain Candidatus Brocadia anammoxidans was 90.9%, but between 98.5 and 98.9% with Candidatus Kuenenia stuttgartiensis, an organism identified in biofilms by molecular methods. The K?lliken culture catalyzed the anaerobic oxidation of ammonium with nitrite in a manner seemingly identical to that of Candidatus B. anammoxidans, but exhibited higher tolerance to phosphate (up to 20 mM) and to nitrite (up to 13 mM) and was active at lower cell densities. Anammox activity was observed only between pH 6.5 and 9, with an optimum at pH 8 and a temperature optimum at 37 degrees C. Hydroxylamine and hydrazine, which are intermediates of the anammox reaction of Candidatus B. anammoxidans, were utilized by the K?lliken organisms, and approximately 15% of the nitrite utilized during autotrophic growth was converted to nitrate. Electron microscopy showed a protein-rich region in the center of the cells surrounded by a doughnut-shaped region containing ribosomes and DNA. This doughnut-shape region was observed with FISH as having a higher fluorescence intensity. Similar to Candidatus B. anammoxidans, the K?lliken anammox organism typically formed homogenous clusters containing up to several hundred cells within an extracellular matrix.  相似文献   
56.
Direct effects of climate change on animal physiology, and indirect impacts from disruption of seasonal synchrony and breakdown of trophic interactions are particularly severe in Arctic and Alpine ecosystems. Unravelling biotic from abiotic drivers, however, remains challenging because high‐resolution animal population data are often limited in space and time. Here, we show that variation in annual horn growth (an indirect proxy for individual performance) of 8043 male Alpine ibex (Capra ibex) over the past four decades is well synchronised among eight disjunct colonies in the eastern Swiss Alps. Elevated March to May temperatures, causing premature melting of Alpine snowcover, earlier plant phenology and subsequent improvement of ibex food resources, fuelled annual horn growth. These results reveal dependency of local trophic interactions on large‐scale climate dynamics, and provide evidence that declining herbivore performance is not a universal response to global warming even for high‐altitude populations that are also harvested.  相似文献   
57.
The cyanobacterial circadian clock can be reconstituted in vitro by mixing recombinant KaiA, KaiB and KaiC proteins with ATP, producing KaiC phosphorylation and dephosphorylation cycles that have a regular rhythm with a ca. 24-h period and are temperature-compensated. KaiA and KaiB are modulators of KaiC phosphorylation, whereby KaiB antagonizes KaiA's action. Here, we present a complete crystallographic model of the Synechococcus elongatus KaiC hexamer that includes previously unresolved portions of the C-terminal regions, and a negative-stain electron microscopy study of S. elongatus and Thermosynechococcus elongatus BP-1 KaiA-KaiC complexes. Site-directed mutagenesis in combination with EM reveals that KaiA binds exclusively to the CII half of the KaiC hexamer. The EM-based model of the KaiA-KaiC complex reveals protein-protein interactions at two sites: the known interaction of the flexible C-terminal KaiC peptide with KaiA, and a second postulated interaction between the apical region of KaiA and the ATP binding cleft on KaiC. This model brings KaiA mutation sites that alter clock period or abolish rhythmicity into contact with KaiC and suggests how KaiA might regulate KaiC phosphorylation.  相似文献   
58.
Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high‐throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein–nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal‐structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor‐made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.  相似文献   
59.
60.
Only scarce information is available on how organic C is incorporated into the soil during the decay and how (micro) climate influences this process. Therefore, we investigated the effect of exposure and elevation on the organic litter decomposition and C-stabilisation in acidic soils of an Alpine environment. An experiment with artificially 13C labelled Norway spruce needles was carried out at north- and south-exposed sites between 1200 and 2400 m a.s.l. in the Italian Alps using mesocosms. After 1 year, the 13C recoveries of the bulk soil were 18.6% at the north-facing slopes and 31.5% at the south-facing slopes. A density fractionation into a light (LF; ≤1.6 g cm?3) and a heavy fraction (HF; >1.6 g cm?3) of the soil helped to identify how the applied substrate was stabilised. At the northern slope, 10.5% of the substrate was recovered in the LF and 8.1% in the HF and at the south-facing slope 22.8% in the LF and 8.1% in the HF. The overall 13C recovery was higher at the south-facing sites due to restricted water availability. Although the climate is humid in the whole area, soil moisture availability becomes more important at south-facing sites due to higher evapotranspiration. However, at sites >1700 m a.s.l, the situation changed, as the northern slope had higher recovery rates. At such altitudes, temperature effects are more dominant. This highlights the importance of locally strongly varying edaphic factors when investigating the carbon cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号