首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   52篇
  338篇
  2022年   7篇
  2021年   10篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   18篇
  2011年   14篇
  2010年   11篇
  2009年   9篇
  2008年   13篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   16篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   12篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有338条查询结果,搜索用时 0 毫秒
141.
Several truffle species (Tuber spp.) are highly prized by chefs and gourmets with some commanding prices of up to €9.000 kg?1 on international markets. Their ecological drivers and geographical patterns, however, often remain a puzzle. Truffle species in Germany are classified as Very Rare or even Extinct on the national Red Lists, while historical literature described their sporadic existence. Here we present evidence of seven Tuber species (T. aestivum, T. brumale, T. excavatum, T. fulgens, T. macrosporum, T. mesentericum, T. rufum), discovered at 121 sites in Southwest Germany. The valuable Burgundy truffle (T. aestivum) occurred at 116 sites. An unexpected abundance of Tuber spp. associated with 13 potential host plants along wide ecological gradients in a region far outside the traditional Mediterranean truffle foci in France, Italy and Spain, is likely indicative of possible responses to climate change, and also suggests ample truffle cultivation potential north of the Alpine arc.  相似文献   
142.
Bacterial Degradation of EDTA   总被引:1,自引:0,他引:1  
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal–EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal–EDTA complexes (Me–EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 1016 (log K < 16), such as Mg–EDTA, Ca–EDTA, and Mn–EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5–10 h of incubation. Me–EDTA complexes with log K above 16 (Zn–EDTA, Co–EDTA, Pb–EDTA, and Cu–EDTA) were not completely degraded during a 24-h incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd–EDTA or Fe(III)–EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   
143.
144.
Five anaerobic bacteria were tested for their abilities to transform tetrachloromethane so that information about enzymes involved in reductive dehalogenations of polychloromethanes could be obtained. Cultures of the sulfate reducer Desulfobacterium autotrophicum transformed some 80 microM tetrachloromethane to trichloromethane and a small amount of dichloromethane in 18 days under conditions of heterotrophic growth. The acetogens Acetobacterium woodii and Clostridium thermoaceticum in fructose-salts and glucose-salts media, respectively, degraded some 80 microM tetrachloromethane completely within 3 days. Trichloromethane accumulated as a transient intermediate, but the only chlorinated methanes recovered at the end of the incubation were 8 microM dichloromethane and traces of chloromethane. Desulfobacter hydrogenophilus and an autotrophic, nitrate-reducing bacterium were unable to transform tetrachloromethane. Reduction of chlorinated methanes was thus observed only in the organisms with the acetyl-coenzyme A pathway. Experiments with [14C]tetrachloromethane were done to determine the fate of this compound in the acetogen A. woodii. Radioactivity in an 11-day heterotrophic culture was largely (67%) recovered in CO2, acetate, pyruvate, and cell material. In experiments with cell suspensions to which [14C]tetrachloromethane was added, 14CO2 appeared within 20 s as the major transformation product. A. woodii thus catalyzes reductive dechlorinations and transforms tetrachloromethane to CO2 by a series of unknown reactions.  相似文献   
145.
Wang Y  Musser SK  Saleh S  Marnett LJ  Egli M  Stone MP 《Biochemistry》2008,47(28):7322-7334
1, N (2)-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-beta- d- erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3 H)-one (M 1dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 A. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'.5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring template dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5'-TCACXAAATCCTTACGAGCATCGCCCCC-3'.5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the "type II" structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91-102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M 1dG adduct formed by malondialdehyde.  相似文献   
146.

Background

The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS→pTS→pTpS→TpS→TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC.

Methodology and Principal Findings

The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP γ-phosphate. T432 is phosphorylated first because it lies consistently closer to Pγ. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation.

Conclusions and Significance

We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.  相似文献   
147.
148.
Death-associated protein kinase (DAPK) has been implicated in apoptosis and tumor suppression, depending on cellular conditions, and associated with mechanisms of disease. However, DAPK has not been characterized as an enzyme due to the lack of protein or peptide substrates. Therefore, we determined the structure of DAPK catalytic domain, used a homology model of docked peptide substrate, and synthesized positional scanning substrate libraries in order to discover peptide substrates with K(m) values in the desired 10 microm range and to obtain knowledge about the preferences of DAPK for phosphorylation site sequences. Mutagenesis of DAPK catalytic domain at amino acids conserved among protein kinases or unique to DAPK provided a link between structure and activity. An enzyme assay for DAPK was developed and used to measure activity in adult brain and monitor protein purification based on the physical and chemical properties of the open reading frame of the DAPK cDNA. The results allow insight into substrate preferences and regulation of DAPK, provide a foundation for proteomic investigations and inhibitor discovery, and demonstrate the utility of the experimental approach, which can be extended potentially to kinase open reading frames identified by genome sequencing projects or functional genetics screens and lacking a known substrate.  相似文献   
149.
We have determined X-ray crystal structures with up to 1.5 A resolution of the catalytic domain of death-associated protein kinase (DAPK), the first described member of a novel family of pro-apoptotic and tumor-suppressive serine/threonine kinases. The geometry of the active site was studied in the apo form, in a complex with nonhydrolyzable AMPPnP and in a ternary complex consisting of kinase, AMPPnP and either Mg2+ or Mn2+. The structures revealed a previously undescribed water-mediated stabilization of the interaction between the lysine that is conserved in protein kinases and the beta- and gamma-phosphates of ATP, as well as conformational changes at the active site upon ion binding. Comparison between these structures and nucleotide triphosphate complexes of several other kinases disclosed a number of unique features of the DAPK catalytic domain, among which is a highly ordered basic loop in the N-terminal domain that may participate in enzyme regulation.  相似文献   
150.
Visualizing a biological clockwork's cogs   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号