首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   51篇
  2023年   2篇
  2022年   5篇
  2021年   7篇
  2020年   8篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   12篇
  2015年   22篇
  2014年   26篇
  2013年   25篇
  2012年   25篇
  2011年   38篇
  2010年   20篇
  2009年   22篇
  2008年   42篇
  2007年   40篇
  2006年   23篇
  2005年   23篇
  2004年   23篇
  2003年   16篇
  2002年   24篇
  2001年   12篇
  2000年   12篇
  1999年   5篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1982年   5篇
  1981年   3篇
  1977年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1969年   3篇
  1968年   4篇
  1967年   2篇
  1966年   2篇
  1963年   2篇
  1961年   2篇
  1936年   2篇
排序方式: 共有553条查询结果,搜索用时 31 毫秒
81.
The lumpy distribution of species along a continuous one-dimensional niche axis recently found by Scheffer and van Nes (Scheffer and van Ness 2006) is explained mathematically. We show that it emerges simply from the eigenvalue and eigenvectors of the community matrix. Both the transient patterns—lumps and gaps between them—as well as the asymptotic equilibrium are explained. If the species are evenly distributed along the niche axis, the emergence of these patterns can be demonstrated analytically. The more general case, of randomly distributed species, shows only slight deviations and is illustrated by numerical simulation. This is a robust result whenever the finiteness of the niche is taken into account: it can be extended to different analytic dependence of the interaction coefficients with the distance on the niche axis (i.e., different kernel interactions), different boundary conditions, etc. We also found that there is a critical value both for the width of the species distribution σ and the number of species n below which the clusterization disappears.
Egbert H. van NesEmail:
  相似文献   
82.
Many populations are exposed to naturally occurring or synthetic toxicants. An increasing number of studies demonstrate that the toxicity of such compounds is not only dependent on the concentration or load, but also on the biomass or density of exposed organisms. At high biomass, organisms may be able to alleviate adverse effects of the toxicant by actively lowering ambient concentrations through either a joint detoxification mechanism or growth dilution. We show in a conceptual model that this mechanism may potentially lead to alternative stable states if the toxicant is lethal at low densities of organisms, whereas a high density is able to reduce the toxicant concentrations to sub-lethal levels. We show in an example that this effect may be relevant in real ecosystems. In an earlier published experimental laboratory study, we demonstrated that ammonia toxicity in eelgrass is highly dependent on the eelgrass shoot density. Here, we used the results of these experiments to construct a model describing the complex interactions between the temperate seagrass Zostera marina and potentially lethal ammonia. Analyses of the model show that alternative stable states are indeed present over wide ranges of key-parameter settings, suggesting that the mechanism might be important especially in sheltered, eutrophicated estuaries where mixing of the water layer is poor. We argue that the same mechanism could cause alternative stable states in other biological systems as well.  相似文献   
83.
The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine.  相似文献   
84.
Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure.

The antenna organization of photosystem II in the diatom Thalassiosira pseudonana strongly differs from Chaetoceros gracilis, while the architecture of the photosystem I antenna remains the same.  相似文献   
85.
Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca. Chloracidobacterium thermophilum" is the first aerobic organism discovered to possess chlorosomes as light-harvesting antennae for phototrophic growth. Chlorosomes were isolated from "Ca. Chloracidobacterium thermophilum" and subjected to electron microscopic, spectroscopic, and biochemical analyses. The chlorosomes of "Ca. Chloracidobacterium thermophilum" had an average size of ~100 by 30 nm. Cryo-electron microscopy showed that the BChl c molecules formed folded or twisted, sheet-like structures with a lamellar spacing of ~2.3 nm. Unlike the BChls in the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum, concentric cylindrical nanotubes were not observed. Chlorosomes of "Ca. Chloracidobacterium thermophilum" contained a homolog of CsmA, the BChl a-binding, baseplate protein; CsmV, a protein distantly related to CsmI, CsmJ, and CsmX of C. tepidum, which probably binds a single [2Fe-2S] cluster; and five unique polypeptides (CsmR, CsmS, CsmT, CsmU, and a type II NADH dehydrogenase homolog). Although "Ca. Chloracidobacterium thermophilum" is an aerobe, energy transfer among the BChls in these chlorosomes was very strongly quenched in the presence of oxygen (as measured by quenching of fluorescence emission). The combined analyses showed that the chlorosomes of "Ca. Chloracidobacterium thermophilum" possess a number of unique features but also share some properties with the chlorosomes found in anaerobic members of other phyla.  相似文献   
86.
Neuron-glia interactions are essential for synaptic function, and glial glutamate (re)uptake plays a key role at glutamatergic synapses. In knockout mice, for either glial glutamate transporters, GLAST or GLT-1, a classical metabolic response to synaptic activation (i.e., enhancement of glucose utilization) is decreased at an early functional stage in the somatosensory barrel cortex following activation of whiskers. Investigation in vitro demonstrates that glial glutamate transport represents a critical step for triggering enhanced glucose utilization, but also lactate release from astrocytes through a mechanism involving changes in intracellular Na(+) concentration. These data suggest that a metabolic crosstalk takes place between neurons and astrocytes in the developing cortex, which would be regulated by synaptic activity and mediated by glial glutamate transporters.  相似文献   
87.
88.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   
89.
90.

Introduction

Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants.

Methods

All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.

Results

All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.

Conclusion

The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号