首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   8篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   18篇
  2012年   10篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
81.
82.

Background

Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents.

Methodology/Principal Findings

The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5–10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5–10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex.

Conclusions/Significance

The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state.  相似文献   
83.
84.
85.
Inulin is a polysaccharide composed mainly of D-fructose units and is the most reliable indicator of the glomerular filtration rate. We have proposed an inulin detection method that involves the hydrolysis of inulin to D-fructose using inulinase and the selective binding of D-fructose from inulin using 5-quinolineboronic acid. In this method, the fluorescence of 5-quinolineboronic acid increases, depending on inulin concentration. For inulin in plasma, the detection and quantitation limits were calculated to be 3.7 and 11 μg/ml, respectively.  相似文献   
86.
Cytochrome ba(3) (ba(3)) of Thermus thermophilus (T. thermophilus) is a member of the heme-copper oxidase family, which has a binuclear catalytic center comprised of a heme (heme a(3)) and a copper (Cu(B)). The heme-copper oxidases generally catalyze the four electron reduction of molecular oxygen in a sequence involving several intermediates. We have investigated the reaction of the fully reduced ba(3) with O(2) using stopped-flow techniques. Transient visible absorption spectra indicated that a fraction of the enzyme decayed to the oxidized state within the dead time (~1ms) of the stopped-flow instrument, while the remaining amount was in a reduced state that decayed slowly (k=400s(-1)) to the oxidized state without accumulation of detectable intermediates. Furthermore, no accumulation of intermediate species at 1ms was detected in time resolved resonance Raman measurements of the reaction. These findings suggest that O(2) binds rapidly to heme a(3) in one fraction of the enzyme and progresses to the oxidized state. In the other fraction of the enzyme, O(2) binds transiently to a trap, likely Cu(B), prior to its migration to heme a(3) for the oxidative reaction, highlighting the critical role of Cu(B) in regulating the oxygen reaction kinetics in the oxidase superfamily.  相似文献   
87.
Reported cisternal puncture methods require the anesthetization and fixation of an animal within a stereotaxic frame. To determine the effect of anesthesia and animal fixation on the central nervous system (CNS), amino acid concentrations of cerebrospinal fluid (CSF) sampled by transcutaneous cisternal puncture were compared among awake rats, pentobarbital-anesthetized rats and pentobarbital-anesthetized rats fixed in a stereotaxic frame. Although the concentrations of many amino acids in the CSF of pentobarbital-anesthetized rats were lower than in awake rats, use of the stereotaxic frame resulted in significantly increased amino acid concentrations in the CSF. These data indicate that CSF sampling by transcutaneous cisternal puncture from awake rats is a suitable method for serial measurement of drug effects on the CNS.  相似文献   
88.
Caffeine decreases insulin sensitivity and insulin-stimulated glucose transport in skeletal muscle; however, the precise mechanism responsible for this deleterious effect is not understood fully. We investigated the effects of incubation with caffeine on insulin signaling in rat epitrochlearis muscle. Caffeine (≥1 mM, ≥15 min) suppressed insulin-stimulated insulin receptor substrate (IRS)-1 Tyr(612) phosphorylation in a dose- and time-dependent manner. These responses were associated with inhibition of the insulin-stimulated phosphorylation of phosphatidylinositol 3-kinase (PI3K) Tyr(458), Akt Ser(473), and glycogen synthase kinase-3β Ser(9) and with inhibition of insulin-stimulated 3-O-methyl-d-glucose (3MG) transport but not with inhibition of the phosphorylation of insulin receptor-β Tyr(1158/62/63). Furthermore, caffeine enhanced phosphorylation of IRS-1 Ser(307) and an IRS-1 Ser(307) kinase, inhibitor-κB kinase (IKK)-α/β Ser(176/180). Blockade of IKK/IRS-1 Ser(307) by caffeic acid ameliorated the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation and 3MG transport. Caffeine also increased the phosphorylation of IRS-1 Ser(789) and an IRS-1 Ser(789) kinase, 5'-AMP-activated protein kinase (AMPK). However, inhibition of IRS-1 Ser(789) and AMPK phosphorylation by dantrolene did not rescue the caffeine-induced downregulation of IRS-1 Tyr(612) phosphorylation or 3MG transport. In addition, caffeine suppressed the phosphorylation of insulin-stimulated IRS-1 Ser(636/639) and upstream kinases, including the mammalian target of rapamycin and p70S6 kinase. Intravenous injection of caffeine at a physiological dose (5 mg/kg) in rats inhibited the phosphorylation of insulin-stimulated IRS-1 Tyr(612) and Akt Ser(473) in epitrochlearis muscle. Our results indicate that caffeine inhibits insulin signaling partly through the IKK/IRS-1 Ser(307) pathway, via a Ca(2+)- and AMPK-independent mechanism in skeletal muscle.  相似文献   
89.
Approximately one-third of patients with stress urinary incontinence (SUI) also suffer from urgency incontinence, which is one of the major symptoms of overactive bladder (OAB) syndrome. Pudendal nerve injury has been recognized as a possible cause for both SUI and OAB. Therefore, we investigated the effects of pudendal nerve ligation (PNL) on bladder function and urinary continence in female Sprague-Dawley rats. Conscious cystometry with or without capsaicin pretreatment (125 mg/kg sc), leak point pressures (LPPs), contractile responses of bladder muscle strips to carbachol or phenylephrine, and levels of nerve growth factor (NGF) protein and mRNA in the bladder were compared in sham and PNL rats 4 wk after the injury. Urinary frequency detected by a reduction in intercontraction intervals and voided volume was observed in PNL rats compared with sham rats, but it was not seen in PNL rats with capsaicin pretreatment that desensitizes C-fiber-afferent pathways. LPPs in PNL rats were significantly decreased compared with sham rats. The contractile responses of detrusor muscle strips to phenylephrine, but not to carbachol, were significantly increased in PNL rats. The levels of NGF protein and mRNA in the bladder of PNL rats were significantly increased compared with sham rats. These results suggest that pudendal nerve neuropathy induced by PNL may be one of the potential risk factors for OAB, as well as SUI. Somato-visceral cross sensitization between somatic (pudendal) and visceral (bladder) sensory pathways that increases NGF expression and alpha(1)-adrenoceptor-mediated contractility in the bladder may be involved in this pathophysiological mechanism.  相似文献   
90.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号