首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   31篇
  318篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   11篇
  2015年   11篇
  2014年   12篇
  2013年   15篇
  2012年   22篇
  2011年   37篇
  2010年   21篇
  2009年   12篇
  2008年   18篇
  2007年   22篇
  2006年   12篇
  2005年   12篇
  2004年   11篇
  2003年   18篇
  2002年   14篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1967年   2篇
  1962年   1篇
  1959年   1篇
排序方式: 共有318条查询结果,搜索用时 0 毫秒
1.
In the American lobster (Homarus americanus) the biogenic amines serotonin and octopamine appear to play important and opposite roles in the regulation of aggressive behavior, in the establishment and/or maintenance of dominant and subordinate behavioral states and in the modulation of the associated postural stances and escape responses. The octopamine-containing neurosecretory neurons in the thoracic regions of the lobster ventral nerve cord fall into two morphological subgroups, the root octopamine cells, a classical neurohemal group with release regions along second thoracic roots, and the claw octopamine cells, a group that selectively innervates the claws. Cells of both subgroups have additional sets of endings within neuropil regions of ganglia of the ventral nerve cord. Octopamine neurosecretory neurons generally are silent, but when spontaneously active or when activated, they show large overshooting action potentials with prominent after-hyperpolarizations. Autoinhibition after high-frequency firing, which is also seen in other crustacean neurosecretory cells, is readily apparent in these cells. The cells show no spontaneous synaptic activity, but appear to be excited by a unitary source. Stimulation of lateral or medial giant axons, which excite serotonergic cells yielded no response in octopaminergic neurosecretory cells and no evidence for direct interactions between pairs of octopamine neurons, or between the octopaminergic and the serotonergic sets of neurosecretory neurons was found.  相似文献   
2.
Activity-dependent neuroprotective protein (ADNP) 2 (KIAA0863; ZNF508) gene, a homeobox-profile containing gene, was identified in a screen for homologous proteins to ADNP. The human ADNP2 contains 1131 amino acid residues with a molecular weight of 122.8 KDa. In silico analysis indicated that ortholgs to ADNP2 exist in different phyla, suggesting that ADNP2 might be evolutionary conserved. Here, we began to explore the molecular and functional characterization of ADNP2. Results showed that the mouse ADNP2 mRNA is ubiquitously expressed in distinct normal tissues with increased expression in the brain, particularly in the cerebral cortex. During development, a relatively high level of ADNP2 gene expression was found in the embryonic mouse brain and was sustained throughout embryogenesis and adulthood. An increase in the mRNA was detected in differentiated P19 neuronal/glial-like cells as compared with the non-differentiated cells. To gain insight into ADNP2 function, ADNP2-deficient cell lines were established by the RNA silencing (small interfering RNA) technology. ADNP2 deficiency significantly changed the toxicity induced by hydrogen peroxide in P19 embryonic carcinoma cells, similar to what would be predicted for ADNP deficiency. These findings represent an initial characterization of ADNP2 and suggest that this gene product may have an important function in brain by playing a role in cellular survival pathways.  相似文献   
3.

Background and purpose

Stroke is a major cause of cognitive impairment and dementia in adults, however the role of the ischemic lesions themselves, on top of other risk factors known in the elderly, remains controversial. This study used structural equation modeling to determine the respective impact of the new ischemic lesions'' volume, preexisting white matter lesions and white matter integrity on post stroke cognitive state.

Methods

Consecutive first ever mild to moderate stroke or transient ischemic attack patients recruited into the ongoing prospective TABASCO study underwent magnetic resonance imaging scans within seven days of stroke onset and were cognitively assessed one year after the event using a computerized neuropsychological battery. The volumes of both ischemic lesions and preexisting white matter lesions and the integrity of the normal appearing white matter tissue were measured and their contribution to cognitive state was assessed using structural equation modeling path analysis taking into account demographic parameters. Two models were hypothesized, differing by the role of ischemic lesions'' volume.

Results

Structural equation modeling analysis of 142 patients confirmed the predominant role of white matter lesion volume (standardized path coefficient β = −0.231) and normal appearing white matter integrity (β = −0.176) on the global cognitive score, while ischemic lesions'' volume showed no such effect (β = 0.038). The model excluding the ischemic lesion presented better fit to the data (comparative fit index 0.9 versus 0.092).

Conclusions

Mild to moderate stroke patients with preexisting white matter lesions are more vulnerable to cognitive impairment regardless of their new ischemic lesions. Thus, these patients can serve as a target group for studies on cognitive rehabilitation and neuro-protective therapies which may, in turn, slow their cognitive deterioration.  相似文献   
4.
Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control and ERAD components. Similar to an established glycosylated ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a, its nonglycosylated mutant, makes use of calnexin, EDEM1, and HRD1, but only glycosylated H2a is a substrate for the cytosolic SCFFbs2 E3 ubiquitin ligase with lectin activity. Two nonglycosylated BiP substrates, NS-1κ light chain and truncated Igγ heavy chain, interact with the ERAD complex lectins OS-9 and XTP3-B and require EDEM1 for degradation. EDEM1 associates through a region outside of its mannosidase-like domain with the nonglycosylated proteins. Similar to glycosylated substrates, proteasomal inhibition induced accumulation of the nonglycosylated proteins and ERAD machinery in the endoplasmic reticulum-derived quality control compartment. Our results suggest a shared ERAD pathway for glycosylated and nonglycosylated proteins composed of luminal lectin machinery components also capable of protein-protein interactions.  相似文献   
5.
6.
Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between β-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with β-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics.  相似文献   
7.
Recent studies have found that extracellular vesicles (EVs) play an important role in normal and disease processes. In the present study, we isolated and characterized EVs from the brains of rhesus macaques, both with and without simian immunodeficiency virus (SIV) induced central nervous system (CNS) disease. Small RNA sequencing revealed increased miR-21 levels in EVs from SIV encephalitic (SIVE) brains. In situ hybridization revealed increased miR-21 expression in neurons and macrophage/microglial cells/nodules during SIV induced CNS disease. In vitro culture of macrophages revealed that miR-21 is released into EVs and is neurotoxic when compared to EVs derived from miR-21-/- knockout animals. A mutation of the sequence within miR-21, predicted to bind TLR7, eliminates this neurotoxicity. Indeed miR-21 in EV activates TLR7 in a reporter cell line, and the neurotoxicity is dependent upon TLR7, as neurons isolated from TLR7-/- knockout mice are protected from neurotoxicity. Further, we show that EVs isolated from the brains of monkeys with SIV induced CNS disease activates TLR7 and were neurotoxic when compared to EVs from control animals. Finally, we show that EV-miR-21 induced neurotoxicity was unaffected by apoptosis inhibition but could be prevented by a necroptosis inhibitor, necrostatin-1, highlighting the actions of this pathway in a growing number of CNS disorders.  相似文献   
8.
9.
Colicin E3 is a protein that kills Escherichia coli cells by a process that involves binding to a surface receptor, entering the cell and inactivating its protein biosynthetic machinery. Colicin E3 kills cells by a catalytic mechanism of a specific ribonucleolytic cleavage in 16S rRNA at the ribosomal decoding A-site between A1493 and G1494 (E. coli numbering system). The breaking of this single phosphodiester bond results in a complete cessation of protein biosynthesis and cell death. The inactive E517Q mutant of the catalytic domain of colicin E3 binds to 30S ribosomal subunits of Thermus thermophilus, as demonstrated by an immunoblotting assay. A model structure of the complex of the ribosomal subunit 30S and colicin E3, obtained via docking, explains the role of the catalytic residues, suggests a catalytic mechanism and provides insight into the specificity of the reaction. Furthermore, the model structure suggests that the inhibitory action of bound immunity is due to charge repulsion of this acidic protein by the negatively charged rRNA backbone  相似文献   
10.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号