首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   26篇
  239篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   13篇
  2012年   18篇
  2011年   31篇
  2010年   16篇
  2009年   9篇
  2008年   15篇
  2007年   18篇
  2006年   10篇
  2005年   10篇
  2004年   9篇
  2003年   14篇
  2002年   13篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
41.
42.
Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.  相似文献   
43.

Background and purpose

Stroke is a major cause of cognitive impairment and dementia in adults, however the role of the ischemic lesions themselves, on top of other risk factors known in the elderly, remains controversial. This study used structural equation modeling to determine the respective impact of the new ischemic lesions'' volume, preexisting white matter lesions and white matter integrity on post stroke cognitive state.

Methods

Consecutive first ever mild to moderate stroke or transient ischemic attack patients recruited into the ongoing prospective TABASCO study underwent magnetic resonance imaging scans within seven days of stroke onset and were cognitively assessed one year after the event using a computerized neuropsychological battery. The volumes of both ischemic lesions and preexisting white matter lesions and the integrity of the normal appearing white matter tissue were measured and their contribution to cognitive state was assessed using structural equation modeling path analysis taking into account demographic parameters. Two models were hypothesized, differing by the role of ischemic lesions'' volume.

Results

Structural equation modeling analysis of 142 patients confirmed the predominant role of white matter lesion volume (standardized path coefficient β = −0.231) and normal appearing white matter integrity (β = −0.176) on the global cognitive score, while ischemic lesions'' volume showed no such effect (β = 0.038). The model excluding the ischemic lesion presented better fit to the data (comparative fit index 0.9 versus 0.092).

Conclusions

Mild to moderate stroke patients with preexisting white matter lesions are more vulnerable to cognitive impairment regardless of their new ischemic lesions. Thus, these patients can serve as a target group for studies on cognitive rehabilitation and neuro-protective therapies which may, in turn, slow their cognitive deterioration.  相似文献   
44.
45.
Crude extracts of wild-typeEscherichia coli contain two catalase species that separate on native polyacrylamide gels. The slow-migrating enzyme (HPII) has two pH optima of activity (at pH 6.8 and 10.5), is activated at 70°C, is sensitive to inhibitory by 3-amino-1,2,4-triazole and has Km values of 18.2 mM at pH 6.8 and of 10 mM at pH 10.5. The fast-migrating enzyme has a single pH optimum of 6.8 and is composed of two isozymes (HPI-A and HPI-B). Its activity is labile at 70°C, it is relatively resistant to inhibition by 3-amino-1,2,4-triazole and has a Km value of 3.7 mM.  相似文献   
46.
Most of the proteins that are specifically turned over by selective autophagy are recognized by the presence of short Atg8 interacting motifs (AIMs) that facilitate their association with the autophagy apparatus. Such AIMs can be identified by bioinformatics methods based on their defined degenerate consensus F/W/Y-X-X-L/I/V sequences in which X represents any amino acid. Achieving reliability and/or fidelity of the prediction of such AIMs on a genome-wide scale represents a major challenge. Here, we present a bioinformatics approach, high fidelity AIM (hfAIM), which uses additional sequence requirements—the presence of acidic amino acids and the absence of positively charged amino acids in certain positions—to reliably identify AIMs in proteins. We demonstrate that the use of the hfAIM method allows for in silico high fidelity prediction of AIMs in AIM-containing proteins (ACPs) on a genome-wide scale in various organisms. Furthermore, by using hfAIM to identify putative AIMs in the Arabidopsis proteome, we illustrate a potential contribution of selective autophagy to various biological processes. More specifically, we identified 9 peroxisomal PEX proteins that contain hfAIM motifs, among which AtPEX1, AtPEX6 and AtPEX10 possess evolutionary-conserved AIMs. Bimolecular fluorescence complementation (BiFC) results verified that AtPEX6 and AtPEX10 indeed interact with Atg8 in planta. In addition, we show that mutations occurring within or nearby hfAIMs in PEX1, PEX6 and PEX10 caused defects in the growth and development of various organisms. Taken together, the above results suggest that the hfAIM tool can be used to effectively perform genome-wide in silico screens of proteins that are potentially regulated by selective autophagy. The hfAIM system is a web tool that can be accessed at link: http://bioinformatics.psb.ugent.be/hfAIM/.  相似文献   
47.
Escherichia coli has two forms of catalases, HPI and HPII. Both enzymes, but mainly HPII, are induced in cells reaching the stationary growth phase or under anaerobic conditions and are repressed in the presence of glucose. The induction at the stationary phase is dependent onfnr, a gene that regulates the expression of anaerobically induced proteins. The inhibition by glucose is not affected by cyclic AMP (cAMP) but is reduced in acrp mutant. The results show that HPII belongs to the group of genes controlled by the Fnr protein and is catabolically repressed in a manner that is independent of cAMP.  相似文献   
48.
The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.  相似文献   
49.
Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70S6K. The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone.  相似文献   
50.
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号