首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   26篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   13篇
  2012年   18篇
  2011年   31篇
  2010年   16篇
  2009年   9篇
  2008年   15篇
  2007年   18篇
  2006年   10篇
  2005年   10篇
  2004年   9篇
  2003年   14篇
  2002年   13篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有237条查询结果,搜索用时 31 毫秒
71.

Background

Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.

Methodology/Principal Findings

MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.

Conclusions/Significance

The results demonstrate that combining ERT with anti-TNF- alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted.  相似文献   
72.
Peroxisome proliferator activator receptors (PPAR) ligands such as 15-Δ12,13-prostaglandin L(2) [PJ] and all trans retinoic acid (ATRA) have been shown to inhibit the development of liver fibrosis. The role of ligands of retinoic X receptor (RXR) and its ligand, 9-cis, is less clear. The purpose of this study was to investigate the effects of combined treatment of the three ligends, PJ, ATRA and 9-cis, on key events during liver fibrosis in rat primary hepatic stellate cells (HSCs). We found that the anti-proliferative effect of the combined treatment of PJ, ATRA and 9-cis on HSCs was additive. Further experiments revealed that this inhibition was due to cell cycle arrest at the G0/G1 phase as demonstrated by FACS analysis. In addition, the combined treatment reduced cyclin D1 expression and increased p21 and p27 protein levels. Furthermore, we found that the three ligands down regulated the phosphorylation of mTOR and p70S6K. The activation of HSCs was also inhibited by the three ligands as shown by inhibition of vitamin A lipid droplets depletion from HSCs. Studies using real time PCR and western blot analysis showed marked inhibition of collagen Iα1 and αSMA by the combination of the three ligands. These findings suggest that the combined use of PJ, ATRA and 9-cis causes inhibition of cell proliferation by cell cycle arrest and down-regulation of fibrotic markers to a greater extent compared to each of the ligands alone.  相似文献   
73.
74.
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell''s height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.  相似文献   
75.
The denatured protein profiles of developing tomato ( Lycopersicon esculentum Mill.) fruits, from the anthesis stage up to fruits at 30% of their final diameter, were examined in a pai-2l pat-2 parthenocarpic line and in its near isogenic non-partheno-carpic line. At anthesis no differences were detected between the protein patterns of ovaries developed on parthenocarpic and non-parthenocarpic plants. In subsequent stages the seeded and seedless fruits differed in the pattern of manifestation of several abundant proteins, none of which seem to be included in seeds The most prominent difference was found in an insoluble protein of 62 kDa; in developing seeded fruits of either the parthenocarpic or the non-parthenocarpic line, its rate of decline was much faster than in seedless fruits. In seeded fruits larger than 4-6 mm in diameter it was scarcely detected, whereas in parthenocarpic seedless 8–10 mm fruits it was still abundant. This protein is fruit specific; it is also enhanced in chemically (n-n-tolyl phthalamic acid) – induced parthenocarpic fruits of the non-parthenocarpic line. The prolonged manifestation in the parthenocarpic fruits results from de novo synthesis of this protein. There are indications that it is not a stress-related protein. This is the first demonstration of an association between the pattern of modulation of a protein and the phenotypic expression of genetically controlled parthenocarpy.  相似文献   
76.
It has been proposed that the reduction of nitrite by red cells producing NO plays a role in the regulation of vascular tone. This hypothesis was investigated in rats by measuring the effect of nitrite infusion on mean arterial blood pressure (MAP), cerebral blood flow (CBF) and cerebrovascular resistance (CVR) in conjunction with the accumulation of red cell NO. The relative magnitude of the effects on MAP and CBF as well as the time dependent changes during nitrite infusion are used to distinguish between the effects on the peripheral circulation and the effects on the cerebral circulation undergoing cerebral autoregulation. The nitrite infusion was found to reverse the 96% increase in MAP and the 13% decrease in CBF produced by L-NAME inhibition of e-NOS. At the same time there was a 20-fold increase in oxygen stable red cell NO. Correlations of the red cell NO for individual rats support a role for red cell nitrite reduction in regulating vascular tone in both the peripheral and the cerebral circulation. Furthermore, data obtained prior to treatment is consistent with a contribution of red cell reduced nitrite in regulating vascular tone even under normal conditions.  相似文献   
77.
78.
The p12 protein of the murine leukemia virus (MLV) is a constituent of the pre-integration complex (PIC) but its function in this complex remains unknown. We developed an imaging system to monitor MLV PIC trafficking in live cells. This allowed the visualization of PIC docking to mitotic chromosomes and its release upon exit from mitosis. Docking occurred concomitantly with nuclear envelope breakdown and was impaired for PICs of viruses with lethal p12 mutations. Insertion of a heterologous chromatin binding module into p12 of one of these mutants restored PICs attachment to the chromosomes and partially rescued virus replication. Capsid dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants. Altogether, these results explain, in part, MLV restriction to dividing cells and reveal a role for p12 as a factor that tethers MLV PIC to mitotic chromosomes.  相似文献   
79.
In the present study, we used the human chemokine receptors CXCR1 and CXCR2 as a model system for the study of intracellular cross-talk between two closely related G protein-coupled receptors (GPCR). In cells expressing either CXCR1 or CXCR2, exposure to the CXCL8 ligand resulted in prominent reduction in cell surface expression of the receptors. We have shown previously that the reduction in cell surface expression of CXCR1 and CXCR2, to be termed herein "down-regulation", is significantly lower in cells expressing both receptors together. Now we show that reduced receptor down-regulation was specific to the CXCR1+CXCR2 pair. Also, CXCR2 carboxyl terminus phosphorylation sites were required for inducing inhibition of CXCR1 down-regulation, and vice versa. Accordingly, phosphorylation of CXCR2 carboxyl terminus domain was intact when expressed together with CXCR1. Moreover, specific carboxyl terminus phosphorylation sites on each of the wild type receptors protected them from more severe inhibition of down-regulation, induced by joint expression with the other receptor. When concomitantly expressed, CXCR1 and CXCR2 were impaired in recycling to the plasma membrane, despite their undergoing intact dephosphorylation. Overall, we show that cross-talk between two GPCR is manifested by impairment of their intracellular trafficking, primarily of ligand-induced down-regulation, via carboxyl terminus phosphorylation sites.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号