首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   2篇
  85篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2010年   1篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1982年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1963年   1篇
  1957年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
Dendritic cells are the major antigen-presenting and antigen-priming cells of the immune system. We review the antigen-presenting and proinflammatory roles played by dendritic cells in the initiation of rheumatoid arthritis (RA) and atherosclerosis, which complicates RA. Various signals that promote the activation of NF-κB and the secretion of TNF and IL-1 drive the maturation of dendritic cells to prime self-specific responses, and drive the perpetuation of synovial inflammation. These signals may include genetic factors, infection, cigarette smoking, immunostimulatory DNA and oxidized low-density lipoprotein, with major involvement of autoantibodies. We propose that the pathogenesis of RA and atherosclerosis is intimately linked, with the vascular disease of RA driven by similar and simultaneous triggers to NF-κB.  相似文献   
22.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   
23.
The impaired glucose-induced insulin release in type 2 diabetes mellitus may be accounted for by reduced B-cell ATP/ADP ratio or decreased phosphorylation of proteins regulating exocytosis of insulin. This, in turn, could be due to enhanced phosphatase activity. Using in situ hybridization techniques to assess the expression of 11 different phosphotyrosine phosphatases (PTPases), known to be present in the B-cells, overexpression by approximately 60% of PTP sigma (also known as LAR-PTP2 or PTP NE-3) was demonstrated in pancreatic islets and liver of spontaneously type 2 diabetic Goto-Kakizaki (GK) rats. In agreement with these findings Western blot of islet lysates, using a polyclonal PTP sigma antiserum, showed increased amounts of the protein in GK relative to control rat islets. Exposure of isolated islets for 20 h to 5 muM antisense to PTP sigma, composed of an antisense PNA sequence of 15 bases linked to the cell penetrating peptide transportan, increased glucose-induced insulin secretion from GK rat islets, but not from control islets. In parallel, the amounts of the phosphatase decreased. In conclusion, increased expression of PTP sigma may be of pathogenetic significance for the defective insulin secretion in GK rat islets.  相似文献   
24.
Effects of the imidazoline compound RX871024 on cytosolic free Ca(2+) concentration ([Ca(2+)]i) and insulin secretion in pancreatic beta-cells from SUR1 deficient mice have been studied. In beta-cells from wild-type mice RX871024 increased [Ca(2+)]i by blocking ATP-dependent K(+)-current (K(ATP)) and inducing membrane depolarization. In beta-cells lacking a component of the K(ATP)-channel, SUR1 subunit, RX871024 failed to increase [Ca(2+)]i. However, insulin secretion in these cells was strongly stimulated by the imidazoline. Thus, a major component of the insulinotropic activity of RX871024 is stimulation of insulin exocytosis independently from changes in K(ATP)-current and [Ca(2+)]i. This means that effects of RX871024 on insulin exocytosis are partly mediated by interaction with proteins distinct from those composing the K(ATP)-channel.  相似文献   
25.
The coronary artery disease (CAD) is a chronic inflammatory disease involving genetic as well as environmental factors. Recent evidence suggests that the oral microbiome has a significant role in triggering atherosclerosis. The present study assessed the oral microbiome composition variation between coronary patients and healthy subjects in order to identify a potential pathogenic signature associated with CAD. We performed metagenomic profiling of salivary microbiomes by 16S ribosomal RNA (rRNA) next-generation sequencing. Oral microbiota profiling was performed for 30 individuals including 20 patients with CAD and ten healthy individuals without carotid plaques or previous stroke or myocardial infarction.We found that oral microbial communities in patients and healthy controls are represented by similar global core oral microbiome. The predominant taxa belonged to Firmicutes (genus Streptococcus, Veillonella, Granulicatella, Selenomonas), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Rothia), Bacteroidetes (genus Prevotella, Porphyromonas), and Fusobacteria (genus Fusobacterium, Leptotrichia). More than 60% relative abundance of each sample for both CAD patients and controls is represented by three major genera including Streptococcus (24.97 and 26.33%), Veillonella (21.43 and 19.91%), and Neisseria (14.23 and 15.33%).Using penalized regression analysis, the bacterial genus Eikenella was involved as the major discriminant genus for both status and Syntax score of CAD. We also reported a significant negative correlation between Syntax score and Eikenella abundance in coronary patients’ group (Spearman rho = −0.68, P=0.00094).In conclusion, the abundance of Eikenella in oral coronary patient samples compared with controls could be a prominent pathological indicator for the development of CAD.  相似文献   
26.
27.
The Goto Kakizaki (GK) rat is a widely used animal model to study defective glucose-stimulated insulin release in type-2 diabetes (T2D). As in T2D patients, the expression of several proteins involved in Ca(2+)-dependent exocytosis of insulin-containing large dense-core vesicles is dysregulated in this model. So far, a defect in late steps of insulin secretion could not be demonstrated. To resolve this apparent contradiction, we studied Ca(2+)-secretion coupling of healthy and GK rat beta cells in acute pancreatic tissue slices by assessing exocytosis with high time-resolution membrane capacitance measurements. We found that beta cells of GK rats respond to glucose stimulation with a normal increase in the cytosolic Ca(2+) concentration. During trains of depolarizing pulses, the secretory activity from GK rat beta cells was defective in spite of upregulated cell size and doubled voltage-activated Ca(2+) currents. In GK rat beta cells, evoked Ca(2+) entry was significantly less efficient in triggering release than in nondiabetic controls. This impairment was neither due to a decrease of functional vesicle pool sizes nor due to different kinetics of pool refilling. Strong stimulation with two successive trains of depolarizing pulses led to a prominent activity-dependent facilitation of release in GK rat beta cells, whereas secretion in controls was unaffected. Broad-spectrum inhibition of PKC sensitized Ca(2+)-dependent exocytosis, whereas it prevented the activity-dependent facilitation in GK rat beta cells. We conclude that a decrease in the sensitivity of the GK rat beta-cell to depolarization-evoked Ca(2+) influx is involved in defective glucose-stimulated insulin secretion. Furthermore, we discuss a role for constitutively increased activity of one or more PKC isoenzymes in diabetic rat beta cells.  相似文献   
28.
Chinese hamster ovary (CHO) cells are widely used as hosts for receptor expression and pharmacological studies. However, several endogenous receptor populations are present on these cells. Intestinal tissue extracts were found to induce strong extracellular acidification responses (ECAR) in CHO cells, yet several pure hormonal peptides, such as VIP, secretin, CCK, GIP, and galanin were ineffective. It is not known, which are the active compounds in the extracts that can stimulate the extracellular acidification in CHO cells. These active substances may be ligands for yet unknown receptors that are present natively in this cell type. We therefore decided to identify the active compound(s) by isolation from intestinal extract and structural characterization. Using chromatographic separations in combination with microphysiometry we have purified and characterized one such bioactive ligand. Structural analysis indicated that the isolated peptide was identical to insulin-like growth factor I (IGF-I). In the intestine, IGF-I is present in low amounts and has previously been detected only with radioimmunoassays. The results indicate that CHO cells express functional receptors for IGF-I. Among the peptides extracted from the intestine IGF-I is probably the strongest stimulator of ECAR in CHO cells. Moreover, IGF-I acts synergistically with other factors present in the crude tissue extract. Additionally, a fragment of calponin H1 (residues 1-43), previously not described at the protein level, was identified in the IGF-I containing fractions. The fragment was characterized by mass spectrometry and found to be N-terminally modified by acetylation suggesting that the whole protein bears the same posttranslational modification.  相似文献   
29.
30.
Exercise affects substrate utilisation and insulin sensitivity, which in turn improve blood glucose and lipid levels in subjects with type 2 diabetes (T2D). However, making long-lasting lifestyle-changes might be more realistic if the results were easier to record. Screening for biomarkers reflecting metabolic fitness could thus serve as a tool for maintained motivation. The aim of this study was to test the possibility that metabolomics can be used to identify individuals with improved insulin sensitivity as a result of increased physical activity. Healthy and diabetic subjects were investigated before and after 3 months of exercise to determine various metabolic parameters. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamps and found to be improved in the diabetic men. Plasma was collected during the clamp and analyzed through GC/TOFMS. Healthy subjects could be distinguished from diabetics by means of low molecular-weight compounds (LMC) in plasma independently of gender or exercise, and exercise induced differences in LMC patterns both for healthy and T2D subjects. Forty-four significant metabolites were found to explain differences between LMC patterns obtained from trained and non-trained diabetics. Among these compounds, 17 could be annotated and 5 classified. Inositol-1-phosphate showed the highest correlation to insulin sensitivity in diabetic men, whereas an as yet unknown fatty acid correlated best with insulin sensitivity in women. Both metabolites were better correlated to insulin sensitivity than glucose. Finally, the finding that inostitol-1-phosphate negatively correlates with insulin sensitivity in diabetic men, was validated using samples obtained from a similar training study on diabetic men. Jeanette Kuhl and Thomas Moritz contributed equally to this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号