首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   40篇
  2023年   2篇
  2022年   8篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   6篇
  2017年   8篇
  2016年   18篇
  2015年   27篇
  2014年   29篇
  2013年   24篇
  2012年   36篇
  2011年   28篇
  2010年   24篇
  2009年   21篇
  2008年   27篇
  2007年   13篇
  2006年   9篇
  2005年   14篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   16篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1996年   8篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   1篇
  1983年   10篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1977年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1970年   2篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
61.
SUMMARY 1. The signaling pathways activated by trkB neurotrophin receptor have been studied in detail in cultured neurons, but little is known about the pathways activated by trkB in intact brain. TrkB is a tyrosine kinase and protein phosphorylation is a key regulatory process in the neuronal signal transduction pathways.2. We have investigated trkB signaling in the transgenic mice overexpressing trkB in postnatal neurons (trkB.TK) using phosphoproteomics.3. We found that several proteins are overphosphorylated on tyrosine residues in the brain of trkB.TK mice and identified some of these proteins.4. We demonstrate that the well characterized signaling molecules mitogen-activated protein kinase (MAPK) and cyclic AMP responsive element binding protein (CREB) were phosphorylated at a higher level in the brain of trkB.TK mice when compared to the wild type littermates. Furthermore, we found that β-actin was tyrosine phosphorylated in the brain of the transgenic mice.5. Our results demonstrate that phosphoproteomics is a sensitive approach to investigate signaling pathways activated in mouse brain.  相似文献   
62.
Production of apoplastic reactive oxygen species (ROS), or oxidative burst, is among the first responses of plants upon recognition of microorganisms. It requires peroxidase or NADPH oxidase (NOX) activity and factors maintaining cellular redox homeostasis. Here, PpTSPO1 involved in mitochondrial tetrapyrrole transport and abiotic (salt) stress tolerance was tested for its role in biotic stress in Physcomitrella patens, a nonvascular plant (moss). The fungal elicitor chitin caused an immediate oxidative burst in wild-type P. patens but not in the previously described ΔPrx34 mutants lacking the chitin-responsive secreted class III peroxidase (Prx34). Oxidative burst in P. patens was associated with induction of the oxidative stress-related genes AOX, LOX7, and NOX, and also PpTSPO1. The available ΔPpTSPO1 knockout mutants overexpressed AOX and LOX7 constitutively, produced 2.6-fold more ROS than wild-type P. patens, and exhibited increased sensitivity to a fungal necrotrophic pathogen and a saprophyte. These results indicate that Prx34, which is pivotal for antifungal resistance, catalyzes ROS production in P. patens, while PpTSPO1 controls redox homeostasis. The capacity of TSPO to bind harmful free heme and porphyrins and scavenge them through autophagy, as shown in Arabidopsis under abiotic stress, seems important to maintenance of the homeostasis required for efficient pathogen defense.  相似文献   
63.
Neurotrophins comprise a group of neuronal growth factors that are essential for the development and maintenance of the nervous system. However, the immature pro-neurotrophins promote apoptosis by engaging in a complex with sortilin and the p75 neurotrophin receptor (p75NTR). To identify the interaction site between sortilin and p75NTR, we analyzed binding between chimeric receptor constructs and truncated p75NTR variants by co-immunoprecipitation experiments, surface plasmon resonance analysis, and FRET. We found that complex formation between sortilin and p75NTR relies on contact points in the extracellular domains of the receptors. We also determined that the interaction critically depends on an extracellular juxtamembrane 23-amino acid sequence of p75NTR. Functional studies further revealed an important regulatory function of the sortilin intracellular domain in p75NTR-regulated intramembrane proteolysis and apoptosis. Thus, although the intracellular domain of sortilin does not contribute to p75NTR binding, it does regulate the rates of p75NTR cleavage, which is required to mediate pro-neurotrophin-stimulated cell death.  相似文献   
64.
Neph3 (filtrin) is a membrane protein expressed in the glomerular epithelial cells (podocytes), but its role in the glomerulus is still largely unknown. To characterize the function of Neph3 in the glomerulus, we employed the zebrafish as a model system. Here we show that the expression of neph3 in pronephros starts before the onset of nephrin and podocin expression, peaks when the nephron primordium differentiates into glomerulus and tubulus, and is then downregulated upon glomerular maturation. By histology, we found that neph3 is specifically expressed in pronephric podocytes at 36 hpf. Furthermore, disruption of neph3 expression by antisense morpholino oligonucleotides results in distorted body curvature and transient pericardial edema, the latter likely reflecting perturbation of glomerular osmoregulatory function. Histological analysis of neph3 morphants reveals altered glomerular morphology and dilated pronephric tubules. The phenotype of neph3 morphants, curved body and pericardial edema, is rescued by wild-type zebrafish neph3 mRNA. In addition to glomerulus, neph3 is highly expressed in the developing brain and specific regions of mature midbrain and hindbrain. In line with this, neph3 morphants show aberrant brain morphology. Collectively, the expression of neph3 in glomerulus and brain together with the morphant phenotype imply that neph3 is a pleiotropic gene active during distinct stages of tissue differentiation and associates directly in the regulation of both glomerular and neural development.  相似文献   
65.
Explaining the evolution of sex is challenging for biologists. A 'twofold cost' compared with asexual reproduction is often quoted. If a cost of this magnitude exists, the benefits of sex must be large for it to have evolved and be maintained. Focusing on benefits can be misleading, as this sidelines important questions about the cost of sex: what is the source of the twofold cost: males, genome dilution or both? Does the cost deviate from twofold? What other factors make sex costly? How should the costs of sex be empirically measured? The total cost of sex and how it varies in different contexts must be known to determine the benefits needed to account for the origin and maintenance of sex.  相似文献   
66.
Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.  相似文献   
67.
We analysed one nuclear gene (18S) and seven plastid markers [five protein coding (atpA, atpB, rbcL, rpoC1, rps4) and two non‐coding (trnHpsbA, trnLtrnF] for 31 members of Polypodiales and four outgroup taxa. We focused our sampling on the lindsaeoids and associated ferns in order to obtain a better understanding of the diversification of the early polypods. However, the exact phylogenetic position of Saccoloma and Cystodium remained uncertain. Based on relaxed molecular clock analyses, it appears that the crown group lindsaeoids diversified in the Caenozoic, more or less simultaneously with the main radiation of other Polypodiales, even though the original divergence between the lindsaeoid and non‐lindsaeoid polypods occurred before the end of the Jurassic. The current pantropical distribution of lindsaeoids can be explained by either long‐distance dispersal across the oceans or vicariance caused by the retreat of previously widely distributed tropical forests from higher to lower latitudes. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 489–503.  相似文献   
68.

Background

Adults born preterm at very low birth weight (VLBW, <1500 g) have elevated levels of risk factors for cardiovascular diseases and type 2 diabetes. Preliminary observations suggest that this could partly be explained by lower rates of physical activity. The aim of this study was to assess physical activity in healthy young adults born preterm at very low birth weight compared with term-born controls.

Methodology/Principal Findings

We studied 94 unimpaired young adults, aged 21–29 years, born at VLBW and 101 age-, sex-, and birth hospital-matched term-born controls from one regional center in Southern Finland. The participants completed a validated 30-item 12-month physical activity questionnaire and the NEO-Personality Inventory based on the Big Five taxonomy, the most commonly used classification of personality traits. Yearly frequency, total time, total volume and energy expenditure of conditioning and non-conditioning leisure-time physical activity (LTPA) and commuting physical activity were compared between VLBW and term-born subjects. A subset of participants underwent dual-energy x-ray absorptiometry for body composition measurement. Data were analyzed by multiple linear regression. Compared with controls, VLBW participants had lower frequency [−38.5% (95% CI; −58.9, −7.7)], total time [−47.4% (95% CI; −71.2, −4.1)], total volume [−44.3% (95% CI; −65.8, −9.2)] and energy expenditure [−55.9% (95% CI; −78.6, −9.4)] of conditioning LTPA when adjusted for age, sex, body mass index, smoking, parental education and personality traits. Adjusting for lean body mass instead of body mass index attenuated the difference. There were no differences in non-conditioning LTPA or commuting physical activity.

Conclusions/Significance

Compared with term-born controls, unimpaired VLBW adults undertake less frequent LTPA with lower total time and volume of exercise resulting in lower energy expenditure. Differences in personality that exist between the VLBW and term-born groups do not seem to explain this association.  相似文献   
69.
Human mesenchymal stem cells (hMSCs) display immunosuppressive properties in vitro and the potential has also been transferred successfully to clinical trials for treatment of autoimmune diseases. OX-2 (CD200), a member of the immunoglobulin superfamily, is widely expressed in several tissues and has recently been found from hMSCs. The CD200 receptor (CD200R) occurs only in myeloid-lineage cells. The CD200-CD200R is involved in down-regulation of several immune cells, especially macrophages. The present study on 20 hMSC lines shows that the CD200 expression pattern varied from high (CD200Hi) to medium (CD200Me) and low (CD200Lo) in bone marrow-derived mesenchymal stem cell (BMMSC) lines, whereas umbilical cord blood derived mesenchymal stem cells (UCBMSCs) were constantly negative for CD200. The role of the CD200-CD200R axis in BMMSCs mediated immunosuppression was studied using THP-1 human macrophages. Interestingly, hMSCs showed greater inhibition of TNF-α secretion in co-cultures with IFN-γ primed THP-1 macrophages when compared to LPS activated cells. The ability of CD200Hi BMMSCs to suppress TNF-α secretion from IFN-γ stimulated THP-1 macrophages was significantly greater when compared to CD200Lo whereas UCBMSCs did not significantly reduce TNF-α secretion. The interference of CD200 binding to the CD200R by anti-CD200 antibody weakened the capability of BMMSCs to inhibit TNF-α secretion from IFN-γ activated THP-1 macrophages. This study clearly demonstrated that the efficiency of BMMSCs to suppress TNF-α secretion of THP-1 macrophages was dependent on the type of stimulus. Moreover, the CD200-CD200r axis could have a previously unidentified role in the BMMSC mediated immunosuppression.  相似文献   
70.
Podocytes are insulin-sensitive and take up glucose in response to insulin. This requires nephrin, which interacts with vesicle-associated membrane protein 2 (VAMP2) on GLUT4 storage vesicles (GSVs) and facilitates their fusion with the plasma membrane. In this paper, we show that the filament-forming GTPase septin 7 is expressed in podocytes and associates with CD2-associated protein (CD2AP) and nephrin, both essential for glomerular ultrafiltration. In addition, septin 7 coimmunoprecipitates with VAMP2. Subcellular fractionation of cultured podocytes revealed that septin 7 is found in both cytoplasmic and membrane fractions, and immunofluorescence microscopy showed that septin 7 is expressed in a filamentous pattern and is also found on vesicles and the plasma membrane. The filamentous localization of septin 7 depends on CD2AP and intact actin organization. A 2-deoxy-d-glucose uptake assay indicates that depletion of septin 7 by small interfering RNA or alteration of septin assembly by forchlorfenuron facilitates glucose uptake into cells and further, knockdown of septin 7 increased the interaction of VAMP2 with nephrin and syntaxin 4. The data indicate that septin 7 hinders GSV trafficking and further, the interaction of septin 7 with nephrin in glomeruli suggests that septin 7 may participate in the regulation of glucose transport in podocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号