首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   12篇
  106篇
  2023年   2篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   9篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1974年   1篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有106条查询结果,搜索用时 10 毫秒
31.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   
32.
Quantitative knowledge of stabilization- and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (soil C) in the tropics. Although it is well documented that different soil types have different soil C stocks, it is presently unknown how different soil types affect the stability of recently formed soil C. Here, we analyze the main controls of soil C storage in the top 0.1 m of soils developed on Tertiary sediments and soils developed on volcanic ashes. Using a combination of fractionation techniques with 13C isotopes analyses we had the opportunity to trace origin and stability of soil carbon in different aggregate fractions under pasture and secondary forest. Soil C contents were higher in volcanic ash soils (47130 g kg−1) than in sedimentary soils (1950 g kg−1). Mean residence time (MRT) of forest-derived carbon in pastures increased from 37 to 57 years with increasing silt + clay content in sedimentary soils, but was independent from soil properties in volcanic ash soils. MRTs of pasture-derived carbon in secondary forests were considerably shorter, especially in volcanic ash soils, where no pasture-derived carbon could be detected in any of the four studied secondary forests. The implications of these results are that the MRT of recently incorporated organic carbon depends on clay mineralogy and is longer in soils dominated by smectite than non-crystalline minerals. Our results show that the presence of soil C stabilization processes, does not necessarily mean that recent incorporated soil C will also be effectively stabilized.  相似文献   
33.
The rapidly growing areal extent of oil palm (Elaeis guineensis Jacq.) plantations and their high fertilizer input raises concerns about their role as substantial N2O sources. In this study, we present the first eddy covariance (EC) measurements of ecosystem-scale N2O fluxes in an oil palm plantation and combine them with vented soil chamber measurements of point-scale soil N2O fluxes. Based on EC measurements during the period August 2017 to April 2019, the studied oil palm plantation in the tropical lowlands of Jambi Province (Sumatra, Indonesia) is a high source of N2O, with average emission of 0.32 ± 0.003 g N2O-N m−2 year−1 (149.85 ± 1.40 g CO2-equivalent m−2 year−1). Compared to the EC-based N2O flux, average chamber-based soil N2O fluxes (0.16 ± 0.047 g N2O-N m−2 year−1, 74.93 ± 23.41 g CO2-equivalent m−2 year−1) are significantly (~49%, p < 0.05) lower, suggesting that important N2O pathways are not covered by the chamber measurements. Conventional chamber-based N2O emission estimates from oil palm up-scaled to ecosystem level might therefore be substantially underestimated. We show that the dynamic gas exchange of the oil palm canopy with the atmosphere and the oil palms' response to meteorological and soil conditions may play an important but yet widely unexplored role in the N2O budget of oil palm plantations. Diel pattern of N2O fluxes showed strong causal relationships with photosynthesis-related variables, i.e. latent heat flux, incoming photosynthetically active radiation and gross primary productivity during day time, and ecosystem respiration and soil temperature during night time. At longer time scales (>2 days), soil temperature and water-filled pore space gained importance on N2O flux variation. These results suggest a plant-mediated N2O transport, providing important input for modelling approaches and strategies to mitigate the negative impact of N2O emissions from oil palm cultivation through appropriate site selection and management.  相似文献   
34.
Our objectives were to quantify and compare soil CO2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO2 release. We measured soil CO2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). At the same time we measured soil CO2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between old alluvium sites, the two-year average CO2 flux rates ranged from 117.3 to 128.9 mg C m–2 h–1. Significantly higher soil CO2 flux occurred on the residual sites (141.1 to 184.2 mg C m–2 h–1). Spatial differences in CO2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO2 storage was high and the amount of CO2 stored in the upper and lower soil profile was different between old alluvial and residual sites. The major factor identified for explaining temporal variations in soil CO2 efflux was soil water content. During periods of high soil water content CO2 emission decreased, probably due to lower diffusion and CO2 production rates. During the 2-year study period inter-annual variation in soil CO2 efflux was not detected.  相似文献   
35.
We developed a procedure for isolating membrane vesicles from the homolactic fermentative bacterium Streptococcus cremoris. The membrane vesicles were shown to have a right-side-out orientation by freeze-etch electron microscopy and to be free of cytoplasmic constituents. The membrane vesicles retained their functional properties and accumulated the amino acids L-leucine, L-histidine, and L-alanine in response to a valinomycin-induced potassium diffusion gradient. Studies with these membrane vesicles strongly supported the possibility that there was a proton motive force-generating mechanism by end product efflux (Michels et al., FEMS Lett. 5:357-364, 1979). Lactate efflux from membrane vesicles which were loaded with L-lactate and diluted in a lactate-free medium led to the generation of an electrical potential across the membrane. The results indicate that lactate efflux is an electrogenic process by which L-lactate is translocated with more than one proton.  相似文献   
36.
Protease-negative variants were shown to outcompete the wild-type strains of Streptococcus cremoris E8, HP, and Wg2 at pH values higher than 6.0 in milk. For S. cremoris E8 this process was studied in more detail. At lower pH values the wild type had a selective advantage. This pH-dependent selection was not found in all media tested. The poor growth of the protease-negative variant at low pH was not due to lower internal pH values. By growing S. cremoris E8 and Wg2 in acidified milk (pH 5.9) the proteolytic activity of the cultures could be stabilized. In continuous cultures under amino acid limitation the wild type S. cremoris E8 and HP strains had a selective advantage over the protease-negative variants at low dilution rates (D < 0.2) at all pH values of the medium. This was apparently due to a lower affinity-constant (Ks) of the protease-positive variants for amino acids. Finally, a high fraction of protease-positive variants could be maintained in continuous cultures by using a growth medium with low concentrations of casein as a nitrogen source. At high dilution rates nearly all cells were protease positive.  相似文献   
37.
The human ether-a-go-go-related gene (HERG) encodes the rapid component of the cardiac delayed rectifier potassium current (I(Kr)). Per-Arnt-Sim domain mutations of the HERG channel are linked to type 2 long-QT syndrome. We studied wild-type and/or type 2 long-QT syndrome-associated mutant (R56Q) HERG current (I(HERG)) in HEK-293 cells, at both 23 and 36 degrees C. Conventional voltage-clamp analysis revealed mutation-induced changes in channel kinetics. To assess functional implication(s) of the mutation, we introduce the dynamic action potential clamp technique. In this study, we effectively replace the native I(Kr) of a ventricular cell (either a human model cell or an isolated rabbit myocyte) with I(HERG) generated in a HEK-293 cell that is voltage-clamped by the free-running action potential of the ventricular cell. Action potential characteristics of the ventricular cells were effectively reproduced with wild-type I(HERG), whereas the R56Q mutation caused a frequency-dependent increase of the action potential duration in accordance with the clinical phenotype. The dynamic action potential clamp approach also revealed a frequency-dependent transient wild-type I(HERG) component, which is absent with R56Q channels. This novel electrophysiological technique allows rapid and unambiguous determination of the effects of an ion channel mutation on the ventricular action potential and can serve as a new tool for investigating cardiac channelopathies.  相似文献   
38.
39.
40.
The new genus Nanooravia Kiran Raj & Sivad. (Poaceae–Andropogoneae–Dimeriinae) from the southwestern Ghats in India is described and illustrated, and the new combination N. santapaui (M. R. Almeida) Kiran Raj & Sivad. is made. The genus is characterized by its usually unequal and intertwined racemes, triquetrous rachis, extremely oblique and glabrous pedicel tip, distantly arranged spikelets, long trigonous callus with oblique tip and densely covered with golden–yellow or yellowish–brown hairs along one angle, keel‐less glumes with a dorsally echinate apex and apically auricled margins, and an upper lemma with a stout awn having a long column. The new genus is distinct from Dimeria R. Br. in which the species was originally described, but is similar to the monotypic Indian genus Pogonachne Bor currently placed in the subtribe Ischaeminae. It occurs in Peninsular India, a region considered as the centre of diversity of the subtribe with more than 50% of the known Dimeria species, including numerous endemics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号