首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   35篇
  398篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   3篇
  2018年   12篇
  2017年   6篇
  2016年   8篇
  2015年   11篇
  2014年   16篇
  2013年   30篇
  2012年   31篇
  2011年   29篇
  2010年   15篇
  2009年   11篇
  2008年   23篇
  2007年   19篇
  2006年   24篇
  2005年   16篇
  2004年   20篇
  2003年   21篇
  2002年   14篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   5篇
  1977年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1962年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
21.
Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night‐light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within‐MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging ‘buffer’ areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.  相似文献   
22.
DNA barcoding the native flowering plants and conifers of Wales   总被引:1,自引:0,他引:1  
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.  相似文献   
23.
24.
25.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   
26.
27.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   
28.
The viral control of cellular acetylation signaling   总被引:9,自引:0,他引:9  
It is becoming clear that the post-translational modification of histone and non-histone proteins by acetylation is part of an important cellular signaling process controlling a wide variety of functions in both the nucleus and the cytoplasm. Recent investigations designate this signaling pathway as one of the primary targets of viral proteins after infection. Indeed, specific viral proteins have acquired the capacity to interact with cellular acetyltransferases (HATs) and deacetylases (HDACs) and consequently to disrupt normal acetylation signaling pathways, thereby affecting viral and cellular gene expression. Here we review the targeting of cellular HATs and HDACs by viral proteins and highlight different strategies adopted by viruses to control cellular acetylation signaling and to accomplish their life cycle.  相似文献   
29.
30.
X-linked adrenoleukodystrophy (X-ALD) is characterized by marked phenotypic variation ranging from adrenomyeloneuropathy (AMN) to childhood cerebral ALD (CCALD). X-ALD is caused by mutations in the ABCD1 gene, but no genotype-phenotype correlation has been established so far and modifier gene variants are suspected to modulate phenotypes. Specific classes of lipids, enriched in very long-chain fatty acids that accumulate in plasma and tissues from X-ALD patients are suspected to be involved in the neuroinflammatory process of CCALD. CD1 proteins are lipid- antigen presenting molecules encoded by five CD1 genes in human (CD1A-E). Association studies with 23 tag SNPs covering the CD1 locus was performed in 52 patients with AMN and 87 patients with CCALD. The minor allele of rs973742 located 4-kb downstream from CD1D was significantly more frequent in AMN patients (χ2 = 7.6; P = 0.006). However, this association was no longer significant after Bonferroni correction for multiple testing. The other polymorphisms of the CD1 locus did not reveal significant association. Further analysis of other CD1D polymorphisms did not detect stronger association with X-ALD phenotypes. Although the association with rs973742 warrants further investigations, these results indicate that the genetic variants of CD1 genes do not contribute markedly to the phenotypic variance of X-ALD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号