首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30154篇
  免费   2607篇
  国内免费   1942篇
  2023年   284篇
  2022年   617篇
  2021年   1134篇
  2020年   823篇
  2019年   1017篇
  2018年   937篇
  2017年   708篇
  2016年   1060篇
  2015年   1592篇
  2014年   1861篇
  2013年   2080篇
  2012年   2534篇
  2011年   2398篇
  2010年   1516篇
  2009年   1300篇
  2008年   1598篇
  2007年   1559篇
  2006年   1316篇
  2005年   1303篇
  2004年   1111篇
  2003年   977篇
  2002年   934篇
  2001年   346篇
  2000年   295篇
  1999年   329篇
  1998年   308篇
  1997年   233篇
  1996年   233篇
  1995年   201篇
  1994年   196篇
  1993年   163篇
  1992年   192篇
  1991年   155篇
  1990年   145篇
  1989年   130篇
  1988年   115篇
  1987年   115篇
  1986年   124篇
  1985年   112篇
  1984年   142篇
  1983年   118篇
  1982年   136篇
  1981年   135篇
  1980年   149篇
  1979年   121篇
  1978年   107篇
  1977年   111篇
  1976年   97篇
  1975年   93篇
  1974年   97篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca2+ (SOC) channels are essential for Ca2+ homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca2+]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.  相似文献   
992.
Neuronal excitation leads to an increase of the extracellular K+ concentration ([K+]o) in brain. This increase has at least two energy-consuming consequences: (1) a depolarization-mediated change in intracellular pH (pHi) in astrocytes due to depolarization-mediated increased activity of the acid-extruding Na+/bicarbonate transporter NBCe1 (driven by secondary active transport, supported by ion gradients established by the Na+, K+-ATPase); and (2) activation of cellular reuptake of K+ mediated by the Na+, K+-ATPase in both neurons and astrocytes. Astrocytic, but not neuronal increase in NBCe1 activity and pHi is also seen after chronic treatment with either of the two anti-bipolar drugs carbamazepine or valproic acid. The third ‘classical’ anti-bipolar drug, ‘lithium’ increases astrocytic pHi by a different mechanism (stimulation of the acid extruding Na+/H+ exchanger NHE1). The acid extruder fluxes, which depend upon the change in pHi per time unit (ΔpHi/Δt) and intracellular buffering power, have not been established in most of these situations. Therefore their stimulatory effects on energy metabolism has not been quantitated. This has been done in the present study in cultured mouse astrocytes. pHi was determined using the fluorescent pH-sensitive indicator BCECF–AM and an Olympus IX71 live cell imaging fluorescence microscope. Molar acid extrusion fluxes (indicating transporter activity) were determined as pHi changes/min during recovery after acid-loading with NH3/NH4 +, NBCe1 mRNA and protein expression in the cultured cells by, respectively RT-PCR and Western blotting. Drug-induced up-regulation of acid extrusion flux was slow and less than physiologically seen after increase in K+ concentration. Energetically, K+ uptake is much costlier than NBCe1 activity.  相似文献   
993.
Sevoflurane anesthesia in infant rats can result in long-term cognitive impairment, possibly by inhibiting neurogenesis. The hippocampus is critical for memory consolidation and is one of only two mammalian brain regions where neural stem cells (NSCs) are renewed continuously throughout life. To elucidate the pathogenesis of sevoflurane-induced cognitive dysfunction, we measured the effects of clinical sevoflurane doses on the survival, proliferation, and differentiation of hippocampal NSCs. Neural stem cells were isolated from Sprague–Dawley rat embryos, expanded in vitro, and exposed to sevoflurane at 0.5, 1, or 1.5 minimal alveolar concentration (MAC) for 1 or 6 h. Two days after treatment, cell viability, cytotoxicity, and apoptosis rate were estimated by WST-1 assay, lactate dehydrogenase (LDH) activity, and TdT-mediated dUTP-biotin nick end labeling (TUNEL), respectively, while proliferation rate was assessed by 5-ethynyl-2′-deoxyuridine (BrdU) incorporation and Ki67 staining. Differentiation was assayed 7 days after treatment by immunocytochemistry and Western blots of neuron and glial markers. The phosphorylation level of p44/42 extracellular regulated kinases (ERK1/2) was measured in the proliferation and differentiation phases respectively. Sevoflurane at 1 MAC or 1.5 MAC for 1 h increased viable cell number whereas a 6 h exposure at these same concentrations suppressed proliferation and promoted apoptotic death (P < 0.01). Sevoflurane had no effect on NSC differentiation, and a sub-clinical concentration (0.5 MAC) altered neither proliferation nor viability. The phosphorylation level of ERK1/2 increased after 1 h of 1 MAC or 1.5 MAC of sevoflurane exposure in the proliferation phase, but not in the differentiation phase. Brief (1 h) exposure to sevoflurane at clinical concentrations enhanced proliferation of cultured NSCs possibly mediated by ERK1/2, but a 6 h exposure suppressed proliferation and induced apoptosis. Prolonged sevoflurane exposure may decrease the self-renewal capacity of hippocampal NSCs, resulting in cognitive deficits.  相似文献   
994.
995.

Objectives

Ischemic stroke is influenced by both environmental and genetic factors. The CD40/CD40L system is related to proinflammatory and prothrombogenic responses, which are involved in the pathophysiology of ischemic stroke. The aim of this study was to evaluate association between the CD40 -1C/T single nucleotide polymorphism (SNP) and ischemic stroke in a Chinese population.

Methods

We conducted a case–control study including 286 ischemic stroke patients and 336 controls. CD40 -1C/T SNP was genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods, and evaluated its relevance to ischemic stroke susceptibility.

Results

Significantly increased ischemic stroke risk was found to be associated with the T allele of CD40 -1C/T (OR = 1.273, 95% CI = 1.016–1.594). The frequencies of CT and TT/CT genotypes of CD40 -1C/T in ischemic stroke patients were significantly higher than those of controls, respectively (for CT: OR = 2.350, 95% CI = 1.601–3.449; for TT/CT: OR = 2.148, 95% CI = 1.479–3.119). And, similar results were obtained after adjusting non-matched variables. We found that the frequency of carried T genotypes (TT and TT/CT) was significantly increased in patients with history of stroke compared with patients without (for TT: OR = 6.538, 95%CI = 1.655–25.833; for TT/CT: OR = 3.469, 95%CI = 1.031–11.670), respectively.

Conclusions

The findings suggested that the CD40 -1C/T polymorphism might contribute to the susceptibility to ischemic stroke in the Chinese population, and might be associated with history of previous stroke.  相似文献   
996.
Nucleotide-binding oligomerization domain containing 2 (NOD2) plays a pivotal role in the host innate and adaptive immunity by recognizing the pathogenic agents. Therefore, its genetic polymorphisms and association with susceptibility to infectious diseases have been widely reported in human and farm animals. In the present study, we investigated the genetic polymorphisms in 3171 bp coding region of NOD2 gene and association with non-specific digestive disorder (NSDD) in rabbit. A total of four coding single-nucleotide polymorphisms (cSNPs) were detected. Among them, c.2961C>T was further genotyped for case (n = 176) and control (n = 130) based on association analysis, which revealed that C allele carried the potential protective role for susceptibility to NSDD with the odds ratio (OR) values of 0.52 (95% confidence interval (CI) 0.37–0.73, P < 0.01). Under the dominant inheritance model, CC genotype was associated with decreased susceptibility to NSDD (OR = 0.38, 95% CI 0.24–0.60, P < 0.01). Along with the aggravation of NSDD, we observed higher mRNA expression of NOD2 gene (P < 0.05). However, the mRNA expression pattern of CC genotype would be interacted by the different status of NSDD, which only showed the significantly increased level in severe NSDD group (P < 0.05). These results revealed by genetic association and gene expression analysis suggested that the NOD2 gene was associated with the susceptibility to NSDD in rabbit. However, the causative mutations linked to c.2961C>T and corresponding functional depiction should be further explored by performing exhaustive genetic studies.  相似文献   
997.
During an egg-laying cycle, oviparous animals transfer massive amounts of triglycerides, the major lipid component of very low density lipoprotein (VLDL), from the liver to the developing oocytes. A major stimulus for this process is the rise in estrogen associated with the onset of an egg-laying cycle. In mammals, the microsomal triglyceride transfer protein (MTP) is required for VLDL assembly and secretion. To enable studies to determine if MTP plays a role in basal and estrogen-stimulated VLDL assembly and secretion in an oviparous vertebrate, we have cloned and sequenced the chicken MTP cDNA. This cDNA encodes a protein of 893 amino acids with an N-terminal signal sequence. The primary sequence of chicken MTP is, on average, 65% identical to that of mammalian homologs, and 23% identical to the Drosophila melanogaster protein. We have obtained a clone of chicken embryo fibroblast cells that stably express the avian MTP cDNA and show that these cells display MTP activity as measured by the transfer of a fluorescently labeled neutral lipid. As in mammals, chicken MTP is localized to the endoplasmic reticulum as revealed by indirect immunofluorescence and by the fact that its N-linked oligosaccharide moiety remains sensitive to endoglycosidase H. Endogenous, enzymatically active MTP is also expressed in an estrogen receptor-expressing chicken hepatoma cell line that secretes apolipoprotein B-containing lipoproteins. In this cell line and in vivo, the expression and activity of MTP are not influenced by estrogen. Therefore, up-regulation of MTP in the liver is not required for the increased VLDL assembly during egg production in the chicken. This indicates that MTP is not rate-limiting, even for the massive estrogen-induced secretion of VLDL accompanying an egg-laying cycle.  相似文献   
998.
产紫杉醇内生真菌枝状枝孢霉MD2的发酵条件优化   总被引:2,自引:0,他引:2  
[目的]通过优化内生真菌枝状枝孢霉MD2的发酵条件,提高10-去乙酰巴卡亭Ⅲ (10-DAB)和紫杉醇(Taxol)的产量.[方法]采用单因素试验分析不同的培养基初始pH值、培养温度、摇床转速和培养时间对10-DAB和紫杉醇产量的影响,优化枝状枝孢霉MD2的培养条件;以YES为基本培养基,采用单因素试验和正交试验分析添加苯甲酸钠、苯丙氨酸、丝氨酸和甘氨酸4种前体物对10-DAB和紫杉醇产量的影响,优化枝状枝孢霉MD2的培养基组分.[结果]优化后发酵条件为:在初始pH为5.0的300 mL YES培养基中,添加15 mg/L苯甲酸钠、25 mg/L苯丙氨酸、5 mg/L丝氨酸、15 mg/L甘氨酸,接种1 mL枝状枝孢霉MD2的孢子悬液(107-10s个孢子/mL),28.0℃、220 r/min发酵培养12d.在此条件下,枝状枝孢霉MD2的生物量、10-DAB和紫杉醇的产量分别为15.5 g/L、471.5 μg/L和569.5 μg/L,与初始发酵条件相比,分别提高了1.3、3.6和3.4倍.[结论]首次获得了枝状枝孢霉MD2生产10-DAB和紫杉醇的较适摇瓶发酵条件,可为进一步放大发酵培养提供参考.  相似文献   
999.
[目的]研究溶藻弧菌的溶血现象,溶血素基因vah的分布及vah基因、vah启动子区对溶藻弧菌溶血活性的贡献.[方法]对46株分离自华南沿海水生动物体内和海水的溶藻弧菌环境株及溶藻弧菌标准株1.1587进行溶血实验;比较具有溶血活性的溶藻弧菌野生株ZJ051、vah基因大肠杆菌BL21重组表达株、vah缺失突变株和基因回补株间溶血能力的差异;检测vah基因在溶藻弧菌中的分布,比较溶血株与非溶血株vah基因及上游启动子区的序列差异.[结果]47.8%的溶藻弧菌菌株产生溶血活性,因此溶血现象普遍存在于溶藻弧菌环境株中;vah基因的表达产物具有溶血活性,vah基因缺失突变株不具有溶血活性,而vah基因回补株恢复溶血活性.vah基因普遍存在于溶藻弧菌中,且基因序列非常相似,氨基酸序列完全相同,然而不同菌株的启动子区第188-190碱基位点存在差异.[结论]溶藻弧菌vah基因是造成溶藻弧菌溶血的直接原因,但溶藻弧菌溶血能力的差异并非是由vah基因本身差异决定,极有可能与启动子区第188-190碱基位点相关.  相似文献   
1000.
前期研究脑表明,脑胶质瘤干细胞(glioma stem cells,GSCs)是胶质瘤发生和发展的重要因素,探索靶向干预GSCs生长有可能成为脑胶质瘤治疗的有效途径之一。该研究旨在阐明两种药物ATRA和Y-分泌酶抑制剂DAPT协同抑制GSCs自我更新的生物学效应。通过用台盼蓝排染法、克隆球形成试验和免疫印迹分析了两种药物的单独使用或联用对GSC样细胞PGCl和PGC2生长、成球能力和自我更新以及干细胞标志物表达的影响。结果发现,单独使用ATRA对PGCl生长有一定的抑制作用,而对PGC2生长几乎没有影响;DAPT对PGCs的生长抑制作用明显强于ATRA。高浓度ATRA(80μmol/L)能诱导PGCs的分化,降低PGCs成球大小,且成球效率降至5%~8%,而正常对照组为32%~35%;同样,DAPT(40μmol/L)也能降低PGCs成球大小,且成球效率降至2%~3%;低浓度ATRA(20μmol/L)和DAPT(5gmol/L)对PGCs自我更新能力和干性没有明显影响,而联合使用后其明显降低PGCs的成球大小,且成球效率降至3%~5%,促进细胞凋亡,并且明显抑制了干细胞标志物Nestin、CDl33、Sox2、Oct4的表达,提高了分化标志物GFAP的表达。该研究证明了低浓度的ATRA和DAPT能协同抑制脑胶质瘤干细胞PGCs的自我更新。研究结果将为脑胶质瘤的临床研究提供实验依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号