首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13587篇
  免费   1221篇
  国内免费   7篇
  2022年   85篇
  2021年   172篇
  2020年   94篇
  2019年   153篇
  2018年   137篇
  2017年   124篇
  2016年   278篇
  2015年   463篇
  2014年   508篇
  2013年   703篇
  2012年   841篇
  2011年   858篇
  2010年   548篇
  2009年   518篇
  2008年   736篇
  2007年   750篇
  2006年   647篇
  2005年   716篇
  2004年   689篇
  2003年   627篇
  2002年   618篇
  2001年   124篇
  2000年   112篇
  1999年   132篇
  1998年   176篇
  1997年   119篇
  1996年   111篇
  1995年   102篇
  1994年   97篇
  1993年   93篇
  1992年   111篇
  1991年   98篇
  1990年   93篇
  1989年   80篇
  1988年   86篇
  1987年   92篇
  1986年   101篇
  1985年   91篇
  1984年   133篇
  1983年   107篇
  1982年   127篇
  1981年   136篇
  1980年   149篇
  1979年   124篇
  1978年   112篇
  1977年   114篇
  1976年   93篇
  1975年   96篇
  1974年   101篇
  1973年   88篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
We recently showed that bitter melon-derived triterpenoids (BMTs) activate AMPK and increase GLUT4 translocation to the plasma membrane in vitro, and improve glucose disposal in insulin resistant models in vivo. Here we interrogated the mechanism by which these novel compounds activate AMPK, a leading anti-diabetic drug target. BMTs did not activate AMPK directly in an allosteric manner as AMP or the Abbott compound (A-769662) does, nor did they activate AMPK by inhibiting cellular respiration like many commonly used anti-diabetic medications. BMTs increased AMPK activity in both L6 myotubes and LKB1-deficient HeLa cells by 20–35%. Incubation with the CaMKKβ inhibitor, STO-609, completely attenuated this effect suggesting a key role for CaMKKβ in this activation. Incubation of L6 myotubes with the calcium chelator EGTA-AM did not alter this activation suggesting that the BMT-dependent activation was Ca2+-independent. We therefore propose that CaMKKβ is a key upstream kinase for BMT-induced activation of AMPK.  相似文献   
22.
Ablation of rat myenteric plexus with benzalkonium chloride has provided a model of intestinal aganglionosis, but the degenerative responses are not well understood. We examined the effects of this detergent on neurons and glia, including expression of c-Myc, c-Jun, JunB, and c-Fos, and on immunocytes in the guinea-pig ileum. Benzalkonium chloride (0.1%) or saline was applied to the serosal surface of distal ileum. Tissues were analyzed 2, 3, or 7 days later and compared with cyclosporine-treated and untreated animals. More than 90% of myenteric neurons were destroyed in ileal segments 3–7 days after benzalkonium-chloride treatment. Glia withdrew processes from around neurons after 2 days and were mostly gone after 3 days. Neuronal c-Myc began to disappear while c-Fos, c-Jun, and JunB were evident in some neuronal nuclei after 2 or 3 days. After 3 days, widespread apoptosis was evident in the myenteric plexus. Populations of T cells, B cells, and macrophage-like cells in untreated and saline-treated myenteric plexuses were substantially increased 3 and 7 days after benzalkonium-chloride treatment. Cyclosporine delayed significant neuronal loss. We conclude that a variety of degenerative mechanisms may be active in this model, including an immune response which may actively contribute to tissue destruction. Received: 13 September 1996 / Accepted: 20 January 1997  相似文献   
23.
Drosophila DBT and vertebrate CKIε/δ phosphorylate the period protein (PER) to produce circadian rhythms. While the C termini of these orthologs are not conserved in amino acid sequence, they inhibit activity and become autophosphorylated in the fly and vertebrate kinases. Here, sites of C-terminal autophosphorylation were identified by mass spectrometry and analysis of DBT truncations. Mutation of 6 serines and threonines in the C terminus (DBTC/ala) prevented autophosphorylation-dependent DBT turnover and electrophoretic mobility shifts in S2 cells. Unlike the effect of autophosphorylation on CKIδ, DBT autophosphorylation in S2 cells did not reduce its in vitro activity. Moreover, overexpression of DBTC/ala did not affect circadian behavior differently from wild-type DBT (DBTWT), and neither exhibited daily electrophoretic mobility shifts, suggesting that DBT autophosphorylation is not required for clock function. While DBTWT protected S2 cells and larvae from UV-induced apoptosis and was phosphorylated and degraded by the proteasome, DBTC/ala did not protect and was not degraded. Finally, we show that the HSP-90 cochaperone spaghetti protein (SPAG) antagonizes DBT autophosphorylation in S2 cells. These results suggest that DBT autophosphorylation regulates cell death and suggest a potential mechanism by which the circadian clock might affect apoptosis.  相似文献   
24.
25.
A new technique has been developed for the isolation of membrane vesicles from the vitamin D-deficient and vitamin D-treated chick intestinal brush border membrane. The technique involves removal of nuclei from a low speed pellet by discontinuous sucrose gradient centrifugation. The resulting intact brush borders are then homogenized in 0.5 M Tris and the membrane fragments purified on a glycerol gradient. This preparation represents a 20-fold purification of the brush border marker sucrase. After 1α-hydroxyvitamin D3 treatment there is a significant increase in membrane phospholipid phosphorous, an alteration in the fatty acid composition of the phosphatidylcholine fraction of membrane phospholipid, and a decrease in sucrase specific activity.  相似文献   
26.
In situ measurements of the rates of photosynthesis and calcification in three species of hermatypic corals were made at Eilat, in the Gulf of Aqaba, Red Sea. Experiments were made at 5, 20 and 35 m depth under unusually poor conditions of submarine illumination for the region, and at the relatively low water temperature (21°C) for coral growth which prevails there all year. Estimates of photosynthetic rates by both the 14C and oxygen methods indicated that the 14C method does measure gross photosynthesis in these organisms even at, and below, light compensation points. Substantial rates of carbon fixation in Acropora and Millepora show that, even under bad conditions, these organisms could survive autotrophically to at least 10 m depth, as also could the massive coral Goniastrea although this had much lower photosynthetic rates under the same conditions, compensated for by a much lower respiratory rate than the other two corals.Calcification rates were variable but showed a considerable increase in light as compared with the dark in all three species, and the rates did not decrease with depth as much as might have been anticipated from the reduction in photosynthesis and ambient light energy. Photosynthetic and calcification rates were similar to those reported for similar organisms both in the Caribbean and on the Great Barrier Reef.  相似文献   
27.
28.
29.
To investigate whether efferent parasympathetic fibers to the trachealsmooth muscle course through the pararecurrent nerve rather than therecurrent or the superior laryngeal nerve, we stimulated all threenerves in anesthetized dogs. We also recorded the pararecurrentnerve activity response to bronchoconstrictor stimuli and compared itwith pressure changes inside a saline-filled cuff of an endotrachealtube. Electrical stimulation (30 s, 100 Hz, 0.1 ms, 10 mA) increasedtracheal cuff pressure by 21.0 ± 3.2 and 1.3 ± 0.7 cmH2O for the pararecurrent and the recurrent laryngealnerve, respectively. Stimulation of the superior laryngeal nerveincreased tracheal cuff pressure before, but not after, sectioning ofthe ramus anastomoticus, which connects it to the pararecurrent nerve.Intravenous administration of sodium cyanide increased pararecurrentnerve activity by 208 ± 51% and tracheal cuff pressure by14.4 ± 3.5 cmH2O. Elevation of end-tidalPCO2 to 50 Torr increased pararecurrent nerveactivity by 49 ± 19% and tracheal cuff pressure by 8.4 ± 3.6 cmH2O. Further elevation to 60 Torr increasedpararecurrent nerve activity by 101 ± 33% and tracheal cuffpressure by 11.3 ± 2.9 cmH2O. These results lead usto the conclusion that parasympathetic efferent fibers reach the smoothmuscle of the canine trachea via the pararecurrent nerve.

  相似文献   
30.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号