首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7681篇
  免费   560篇
  国内免费   1篇
  8242篇
  2024年   12篇
  2023年   72篇
  2022年   100篇
  2021年   204篇
  2020年   153篇
  2019年   174篇
  2018年   226篇
  2017年   219篇
  2016年   286篇
  2015年   425篇
  2014年   413篇
  2013年   549篇
  2012年   621篇
  2011年   632篇
  2010年   393篇
  2009年   338篇
  2008年   443篇
  2007年   424篇
  2006年   339篇
  2005年   337篇
  2004年   323篇
  2003年   273篇
  2002年   254篇
  2001年   89篇
  2000年   78篇
  1999年   67篇
  1998年   88篇
  1997年   58篇
  1996年   46篇
  1995年   49篇
  1994年   39篇
  1993年   44篇
  1992年   29篇
  1991年   28篇
  1990年   44篇
  1989年   28篇
  1988年   25篇
  1987年   28篇
  1986年   28篇
  1985年   44篇
  1984年   25篇
  1983年   16篇
  1982年   20篇
  1981年   13篇
  1980年   18篇
  1979年   15篇
  1973年   10篇
  1972年   11篇
  1968年   12篇
  1967年   11篇
排序方式: 共有8242条查询结果,搜索用时 15 毫秒
211.
212.
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.  相似文献   
213.
214.
In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson’s disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.  相似文献   
215.
216.
Astragalus gombiformis is a desert symbiotic nitrogen-fixing legume of great nutritional value as fodder for camels and goats. However, there are no data published on the rhizobial bacteria that nodulate this wild legume in northern Africa. Thirty-four rhizobial bacteria were isolated from root nodules of A. gombifomis grown in sandy soils of the South-Eastern of Morocco. Twenty-five isolates were able to renodulate their original host and possessed a nodC gene copy. The phenotypic and genotypic characterizations carried out illustrated the diversity of the isolates. Phenotypic analysis showed that isolates used a great number of carbohydrates as sole carbon source. However, although they were isolated from arid sandy soils, the isolates do not tolerate drought stress applied in vitro. The phenotypic diversity corresponded mainly to the diversity in the use of some carbohydrates. The genetic analysis as assessed by repetitive extragenic palindromic (REP)-polymerase chain reaction (PCR) showed that the isolates clustered into 3 groups at a similarity coefficient of 81 %. The nearly-complete 16S rRNA gene sequence from a representative strain of each PCR-group showed they were closely related to members of the genus Mesorhizobium of the family Phyllobactericeae within the Alphaproteobacteria. Sequencing of the housekeeping genes atpD, glnII and recA, and their concatenated phylogenetic analysis, showed they are closely related to Mesorhizobium camelthorni. Sequencing of the symbiotic nodC gene from each strain revealed they had 83.53 % identity with the nodC sequence of the type strain M. camelthorni CCNWXJ 40-4T.  相似文献   
217.
Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.  相似文献   
218.

Background

The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped.

Methods

Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets.

Results

Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams.

Conclusions

Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.  相似文献   
219.
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.  相似文献   
220.
The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10–1,093 m a.s.l.) in the Atlantic Rainforest—a top hotspot for biodiversity conservation—and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号