首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8758篇
  免费   629篇
  国内免费   1篇
  9388篇
  2023年   66篇
  2022年   103篇
  2021年   203篇
  2020年   154篇
  2019年   178篇
  2018年   219篇
  2017年   220篇
  2016年   280篇
  2015年   440篇
  2014年   440篇
  2013年   607篇
  2012年   721篇
  2011年   719篇
  2010年   426篇
  2009年   342篇
  2008年   501篇
  2007年   486篇
  2006年   412篇
  2005年   381篇
  2004年   392篇
  2003年   329篇
  2002年   310篇
  2001年   146篇
  2000年   127篇
  1999年   101篇
  1998年   100篇
  1997年   63篇
  1996年   53篇
  1995年   50篇
  1994年   65篇
  1993年   42篇
  1992年   65篇
  1991年   50篇
  1990年   50篇
  1989年   41篇
  1988年   33篇
  1987年   39篇
  1986年   37篇
  1985年   47篇
  1984年   40篇
  1983年   25篇
  1982年   28篇
  1981年   20篇
  1980年   24篇
  1979年   20篇
  1976年   16篇
  1975年   16篇
  1973年   18篇
  1972年   15篇
  1968年   14篇
排序方式: 共有9388条查询结果,搜索用时 0 毫秒
181.
Avibactam is a non-β-lactam β-lactamase inhibitor for treating complicated urinary tract and respiratory infections caused by multidrug-resistant bacterial pathogens, a serious public health threat. Despite its importance, the release mechanism of avibactam from the enzyme-inhibitor complex has been scarcely studied from first principles, considering the total protein environment. This information at the molecular level is essential for the rational design of new antibiotics and inhibitors. In this article, we addressed the release of avibactam from the complex CTX-M-15 by means of molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. This study provides molecular information not available earlier, including exploration of the potential energy surfaces, characterization of the observed intermediate, and their critical points, as well. Our results show that unlike that observed in the acylation reaction, the residues Glu166 and Lys73 would be in their neutral forms. Release of avibactam follows a stepwise mechanism in which the first stage corresponds to the formation of a tetrahedral intermediate, whereas the second stage corresponds to the cleavage of the Ser70-C7 bond, mediated by Lys73, either directly or through Ser130.  相似文献   
182.
Global warming is predicted to cause more intense extreme events such as heat waves, flooding and severe droughts, producing significant effects on agriculture. In tropics, climate change will severely impact livestock production affecting water availability, forage quality and food for cattle. We investigated the isolated and combined effects of soil water deficit (wS) and + 2°C increase in canopy temperature (eT) on leaf gas exchange, chlorophyll fluorescence, carbohydrate content, forage quality and in vitro dry matter digestibility (IVDMD) of a field‐grown C4 tropical forage grass Panicum maximum Jacq. using a temperature‐free air‐controlled enhancement (T‐FACE) system. The wS and eT treatments showed no effects on photosystem II photochemistry. However, wS under ambient temperature decreased net photosynthesis rate (A), stomatal conductance (gs) and maximum rate of carboxylation of Rubisco (Vcmax), leading to a reduced starch content in leaves. A 16% reduction in leaf dry mass (LDM) and reduction in forage quality by increasing fibers, reducing crude protein (CP) and decreasing the IVDMD was also observed by effect of wS. Warming under adequate soil moisture (eT) significantly increased LDM by 25% but reduced the forage quality, increasing the lignin content and reducing starch, CP and digestibility. The combined wSeT treatment reduced A, gs, Vcmax and the forage quality. When compared to control, the lignin content in leaves increased by 43, 28 and 17% in wS, eT and wSeT, respectively, causing a significant reduction in IVDMD. We concluded that despite physiological mechanisms to acclimate to warming, both warming and water deficit will impair the quality and digestibility of C4 tropical pastures.  相似文献   
183.

Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.

  相似文献   
184.

The objective of this study was to evaluate the effects of different natural ventilation systems and explant types on the growth and volatile compound content of Lippia gracilis cultured in vitro. The treatments consisted of four membrane systems (without membrane, with one, two, and four porous membranes) and two explant types (nodal segments with and without a pair of leaves). The evaluation of growth, photosynthetic pigments and chemical analysis of the volatile fraction were performed at 35 days of cultivation in half strength MS basal medium. Natural ventilation systems significantly influenced the in vitro growth and volatile fraction of L. gracilis. Explants with a pair of leaves obtained the best experimental responses. The natural ventilation system with four membranes provided the best growth parameters and leaf area response of L. gracilis explants with leaves. The photosynthetic pigments decreased with an increase in the number of porous membranes in the culture flask. Variations in the number, content, and profile of volatile compounds under the influence of natural ventilation systems were observed. Major constituents such as ρ-cymene, γ-terpinene, thymol, carvacrol, and E-caryophyllene, regardless of experimental conditions, were identified. The highest carvacrol and thymol contents were observed in plantlets grown in culture flasks with four porous membranes. To maximize the content of carvacrol and thymol from the in vitro culture of L. gracilis, explants with a pair of leaves and four porous membranes in culture flasks are recommended for use.

  相似文献   
185.
The objective of this study was to evaluate the effects of cold and room‐temperature storage on the quality of Colossoma macropomum sperm. The experiment was carried out in December (end of Spring), in Nova Mutum‐MT, Brazil, involving nine C. macropomum males (4 years old; 6.4 ± 1.5 kg average weight). The fish were selected and transferred to masonry tanks (4 m3) in a laboratory (water renewal rate: 10 L/s; average water temperature: 28°C). Subsequently, reproduction was induced using 2.5 mg of crude carp pituitary extract/kg and the semen was harvested 240 degree hours after hormonal induction. The following sperm characteristics were analyzed every 5 hr using Image J/casa software: total motility (MOT), curvilinear velocity (VCL), average path velocity (VAP), straight‐line velocity (VSL), straightness of sperm path (STR), wobble (WOB), progressive motility (PROG), beat cross frequency (BCF) and total number of spermatozoa (NSPZ). A fresh sample of semen from each animal was kept at room temperature (25.3 ± 1.2°C). For analysis of cooled semen, syringes were kept in cooling boxes at an average temperature of 16.9 ± 2.1°C. The reduction (p < 0.05) of MOT in semen kept at room temperature occurred at 10 hr (13.95%); in cooled semen, however, MOT declined at 15 hr (76.87%). At 15 hr, there was practically no MOT in the semen kept at room temperature (0.20%), whereas in the cooled semen this situation was observed only at 35 hr (2.91%) The MOT of cooled sperm was higher (p < 0.05) at all times (except zero time), compared with the semen maintained at room temperature. At 15 hr, the cooled spermatozoa showed higher (p < 0.05) VCL (142.18 μm/s) and BCF (29.72 Hz) than those maintained at room temperature (VCL: 51.18 μm/s; BCF: 19.57 Hz). After 15 hr, only the cooled sperm showed quality. In conclusion, semen cooling allows for extending the viability of C. macropomum spermatozoa from 5 to 10 hr without compromising their quality in most characteristics. At 15 and 25 hr of cooling, sperm viability is still observed, though with decreased quality.  相似文献   
186.

Cadmium (Cd) is a toxic metal and classified as a carcinogen whose exposure could affect the function of the central nervous system. There are studies that suggest that Cd promotes neurodegeneration in different regions of the brain, particularly in the hippocampus. It is proposed that its mechanism of toxicity maybe by an oxidative stress pathway, which modifies neuronal morphology and causes the death of neurons and consequently affecting cognitive tasks. However, this mechanism is not yet clear. The aim of the present work was to study the effect of Cd administration on recognition memory for 2, 3 and 4 months, neuronal morphology and immunoreactivity for caspase-3 and 9 in rat hippocampi. The results show that the administration of Cd decreased recognition memory. Likewise, it caused the dendritic morphology of the CA1, CA3 and dentate gyrus regions of the hippocampus to decrease with respect to the time of administration of this heavy metal. In addition, we observed a reduction in the density of dendritic spines as well as an increase in the immunoreactivity of caspase-3 and 9 in the same hippocampal regions of the animals treated with Cd. These results suggest that Cd affects the structure and function of the neurons of the hippocampus, which contribute to the deterioration of recognition memory. Our results suggest that the exposure to Cd represents a critical health problem, which if not addressed quickly, could cause much more serious problems in the quality of life of the human population, as well as in the environment in which they develop.

  相似文献   
187.

Bacillus methylotrophicus M4-96 is a beneficial rhizobacterium that has been isolated from the rhizosphere of maize (Zea mays). In this study, we investigated its efficacy as a plant growth promoter for strawberry in vitro, as well as its ability to induce callose deposition in leaves to reduce the severity of Botrytis cinerea infection. Two methods of plant-bacterial interaction were used: inoculation near the root and emission of volatile compounds with no physical contact. Plant biomass increased under both treatments, but with developmental parameters of the plants differentially stimulated by each method. Root inoculation increased petiole number and root length, whereas bacterial volatiles increased petiole length and root number. A chemical analysis of the bacterial culture revealed the presence of indole acetic acid (0.21 μg L−1) and gibberellic acid (6.16 μg L−1). Acetoin was previously identified as the major volatile produced by the bacteria, and its application to strawberry explants increased their growth and development. Furthermore, when acetoin and both phytoregulators were added to the culture media, these positive effects were enhanced. The inoculation method also affected the size and quantity of callose deposits in the leaves. Treatment with volatiles increased callose deposition in the leaves by up to five-fold, which promoted a rapid defense reaction that inhibited the incidence of gray mold by reinforcing cell wall. Taken together, our results show that B. methylotrophicus M4-96 promotes growth and induces systemic resistance in strawberry plants.

  相似文献   
188.
The underwater light field has been studied in a hypertrophic, gravel-pit lake close to Madrid (Spain) during a one year cycle. Both the inherent and the apparent properties of the underwater light field have been weekly surveyed. As theoretically expected, there is a link between inherent and apparent properties in this lake. Evidence is given suggesting that a seasonal trend in the underwater light field seems to occur. The main factor attenuating light in the vertical column is phytoplankton chlorophyll “a” but humic substances also appear to play an importtant role in light attenuation.  相似文献   
189.
TaxonomyBacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri.Host range Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within Xhortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak‐leaf hydrangea.Epidemiology and control X. hortorum pathovars are mainly disseminated by infected seeds (e.g., Xhortorum pvs carotae and vitians) or cuttings (e.g., Xhortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., Xhortorum pvs vitians and carotae). Control measures against Xhortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper‐based compounds against Xhortorum are used, but the emergence of copper‐tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance.Useful websites https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号